SECRETION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
19100.9956Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.201121966516
3110.9955miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance.202234968734
58720.9955The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.201322992462
66530.9955Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE: Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.202438534119
73040.9954How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production.199910081503
73150.9954Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues.19979092473
58960.9953Insulin Signaling and Insulin Resistance Facilitate Trained Immunity in Macrophages Through Metabolic and Epigenetic Changes. Adaptation of the innate immune system has been recently acknowledged, explaining sustained changes of innate immune responses. Such adaptation is termed trained immunity. Trained immunity is initiated by extracellular signals that trigger a cascade of events affecting cell metabolism and mediating chromatin changes on genes that control innate immune responses. Factors demonstrated to facilitate trained immunity are pathogenic signals (fungi, bacteria, viruses) as well non-pathogenic signals such as insulin, cytokines, adipokines or hormones. These signals initiate intracellular signaling cascades that include AKT kinases and mTOR as well as histone methylases and demethylases, resulting in metabolic changes and histone modifications. In the context of insulin resistance, AKT signaling is affected resulting in sustained activation of mTORC1 and enhanced glycolysis. In macrophages elevated glycolysis readily impacts responses to pathogens (bacteria, fungi) or danger signals (TLR-driven signals of tissue damage), partly explaining insulin resistance-related pathologies. Thus, macrophages lacking insulin signaling exhibit reduced responses to pathogens and altered metabolism, suggesting that insulin resistance is a state of trained immunity. Evidence from Insulin Receptor as well as IGF1Receptor deficient macrophages support the contribution of insulin signaling in macrophage responses. In addition, clinical evidence highlights altered macrophage responses to pathogens or metabolic products in patients with systemic insulin resistance, being in concert with cell culture and animal model studies. Herein, we review the current knowledge that supports the impact of insulin signaling and other insulin resistance related signals as modulators of trained immunity.201931244863
58670.9953Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.201324066281
66680.9951Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na(+)/H(+) transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane fluidity.201728611746
72890.9951Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization.202032796669
8190100.9950Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci. Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. IMPORTANCE: The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth.201525968646
668110.9950c-di-GMP regulates the resistance of Pseudomonas aeruginosa to heat shock and aminoglycoside antibiotics by targeting the σ factor RpoH. Cyclic di-GMP (c-di-GMP) is a second messenger molecule that is widely distributed in bacteria and plays various physiologically important regulatory roles through interactions with a variety of effector molecules. Sigma (σ) factors are the predominant transcription factors involved in transcription regulation in bacteria. While c-di-GMP has been shown to bind to a range of transcription factors, c-di-GMP-binding σ factors have never been reported before. In a c-di-GMP/σ factors binding screen, we identified the σ factor RpoH as a c-di-GMP-responsive transcription factor in Pseudomonas aeruginosa PAO1. We further show that the binding of c-di-GMP to RpoH inhibits binding of RpoH to the promoters of its target genes such as asrA and dnaK, thereby downregulating the expression of these genes and reducing the resistance of P. aeruginosa to heat shock and aminoglycoside antibiotics. RpoH from Escherichia coli, Burkholderia thailandensis and Agrobacterium tumefaciens are also capable of binding c-di-GMP, suggesting that c-di-GMP-mediated control of the activity of RpoH is conserved in members of Proteobacteria.202641005124
751120.9950Global transcriptomics and targeted metabolite analysis reveal the involvement of the AcrAB efflux pump in physiological functions by exporting signaling molecules in Photorhabdus laumondii. In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. Photorhabdus laumondii is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in P. laumondii TT01. Here, we explore the pleiotropic effects of AcrAB in this bacterium. RNA sequencing of ∆acrA compared to wild type revealed growth-phase-specific gene regulation, with stationary-phase cultures showing significant downregulation of genes involved in stilbene, fatty acid, and anthraquinone pigment biosynthesis, as well as genes related to cellular clumping and fimbrial pilin formation. Genes encoding putative LuxR regulators, type VI secretion systems, two-partner secretion systems, and contact-dependent growth inhibition systems were upregulated in ∆acrA. Additionally, exponential-phase cultures revealed reduced expression of genes related to motility in ∆acrA. The observed transcriptional changes were consistent with phenotypic assays, demonstrating that the ∆acrA mutant had altered bioluminescence and defective orange pigmentation due to disrupted anthraquinone production. These findings confirm the role of stilbenes as signaling molecules involved in gene expression, thereby shaping these phenotypes. Furthermore, we showed that AcrAB contributes to swarming and swimming motilities independently of stilbenes. Collectively, these results highlight that disrupting acrAB causes transcriptional and metabolic dysregulation in P. laumondii, likely by impeding the export of key signaling molecules such as stilbenes, which may serve as a ligand for global transcriptional regulators.IMPORTANCERecent discoveries have highlighted Photorhabdus laumondii as a promising source of novel anti-infective compounds, including non-ribosomal peptides and polyketides. One key player in the self-resistance of this bacterium to stilbene derivatives is the AcrAB-TolC complex, which is also a well-known contributor to multidrug resistance. Here, we demonstrate the pleiotropic effects of the AcrAB efflux pump in P. laumondii TT01, impacting secondary metabolite biosynthesis, motility, and bioluminescence. These effects are evident at transcriptional, metabolic, and phenotypic levels and are likely mediated by the efflux of signaling molecules such as stilbenes. These findings shed light on the multifaceted roles of efflux pumps and open avenues to better explore the complexity of resistance-nodulation-division (RND) pump-mediated signaling pathways in bacteria, thereby aiding in combating multidrug-resistant infections.202540920493
727130.9949Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.201626901131
200140.9949Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.200111742401
86150.9949Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Genes encoding the virulence-promoting type III secretion system (T3SS) in phytopathogenic bacteria are induced at the start of infection, indicating that recognition of signals from the host plant initiates this response. However, the precise nature of these signals and whether their concentrations can be altered to affect the biological outcome of host-pathogen interactions remain speculative. Here we use a metabolomic comparison of resistant and susceptible genotypes to identify plant-derived metabolites that induce T3SS genes in Pseudomonas syringae pv tomato DC3000 and report that mapk phosphatase 1 (mkp1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these bioactive compounds. Consistent with these observations, T3SS effector expression and delivery by DC3000 was impaired when infecting the mkp1 mutant. The addition of bioactive metabolites fully restored T3SS effector delivery and suppressed the enhanced resistance in the mkp1 mutant. Pretreatment of plants with pathogen-associated molecular patterns (PAMPs) to induce PAMP-triggered immunity (PTI) also restricts T3SS effector delivery and enhances resistance by unknown mechanisms, and the addition of the bioactive metabolites similarly suppressed both aspects of PTI. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate its T3SS and that the level of these host-derived signals impacts bacterial pathogenesis.201424753604
8302160.9948Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE: Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.202438837409
82170.9948Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs.200616553893
667180.9948Increased intracellular H(2)S levels enhance iron uptake in Escherichia coli. We investigated the impact of intracellular hydrogen sulfide (H(2)S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H(2)S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H(2)S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H(2)S hyperaccumulation affects iron availability within cells. We found that the H(2)S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H(2)S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE: H(2)S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H(2)S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H(2)S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H(2)S synthesis in bacterial physiology.202439324809
8150190.9948ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Leguminous plants have exclusive ability to form symbiotic relationship with soil bacteria of the genus Rhizobium. Symbiosis is a complex process that involves multiple molecular signaling activities, such as calcium fluxes, production of reactive oxygen species (ROS) and synthesis of nodulation genes. We analyzed the role of ROS in defense gene expression in Medicago truncatula during symbiosis and pathogenesis. Studies in Arabidopsis thaliana showed that the induction of pathogenesis-related (PR) genes during systemic acquired resistance (SAR) is regulated by NPR1 protein, which resides in the cytoplasm as an oligomer. After oxidative burst and return of reducing conditions, the NPR1 undergoes monomerization and becomes translocated to the nucleus, where it functions in PR genes induction. We show that ROS production is both stronger and longer during symbiotic interactions than during interactions with pathogenic, nonhost or common nonpathogenic soil bacteria. Moreover, root cells inoculated with Sinorhizobium meliloti accumulated ROS in the cytosol but not in vacuoles, as opposed to Pseudomonas putida inoculation or salt stress treatment. Furthermore, increased ROS accumulation by addition of H₂O₂ reduced the PR gene expression, while catalase had an opposite effect, establishing that the PR gene expression is opposite to the level of cytoplasmic ROS. In addition, we show that salicylic acid pretreatment significantly reduced ROS production in root cells during symbiotic interaction.201222499208