# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 613 | 0 | 0.8394 | 4-Hydroxy-2-nonenal antimicrobial toxicity is neutralized by an intracellular pathogen. Pathogens encounter numerous antimicrobial responses during infection, including the reactive oxygen species (ROS) burst. ROS-mediated oxidation of host membrane poly-unsaturated fatty acids (PUFAs) generates the toxic alpha-beta carbonyl 4-hydroxy-2-nonenal (4-HNE). Although studied extensively in the context of sterile inflammation, research into 4-HNE's role during infection remains limited. Here, we found that 4-HNE is generated during bacterial infection, that it impacts growth and survival in a range of bacteria, and that the intracellular pathogen Listeria monocytogenes induces many genes in response to 4-HNE exposure. A component of the L. monocytogenes 4-HNE response is the expression of the genes lmo0103 and lmo0613, deemed rha1 and rha2 (reductase of host alkenals), respectively, which code for two NADPH-dependent oxidoreductases that convert 4-HNE to the product 4-hydroxynonanal (4-HNA). Loss of these genes had no impact on L. monocytogenes bacterial burdens during murine or tissue culture infection. However, heterologous expression of rha1/2 in Bacillus subtilis significantly increased bacterial resistance to 4-HNE in vitro and promoted bacterial survival following phagocytosis by murine macrophages in an ROS-dependent manner. Thus, Rha1 and Rha2 are not necessary for 4-HNE resistance in L. monocytogenes but are sufficient to confer resistance to an otherwise sensitive organism in vitro and in host cells. Our work demonstrates that 4-HNE is a previously unappreciated component of ROS-mediated toxicity encountered by bacteria within eukaryotic hosts. | 2021 | 33955352 |
| 8980 | 1 | 0.8369 | Omics analyses indicate sdhC/D act as hubs of early response of E. coli to antibiotics. In recent years, the phenomenon of microbial resistance has become increasingly serious. The generation of reactive oxygen species (ROS) during the bactericidal process of antibiotics has attracted great interest, but little research has been done on the generation of ROS in the early stage of antibiotic action. We confirmed the rapid production of ROS by flow cytometry and transmission electron microscopy (TEM). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis indicated that the oxidative phosphorylation pathway is the key pathway of ROS production. Protein-protein interaction (PPI) network results indicate that sdhC/D are key genes in the oxidative phosphorylation pathway. The overexpression of sdhC/D resulted in a lower survival rate than the control strain after antibiotic treatments, which might be due to excess ROS induced by sdhC/D overexpression. The production of superoxide anion in the overexpress strain was significantly higher than that in the control strain, which further verified the importance of sdhC/D in the ROS release of bacteria. Current results showed that bacteria produce large amounts of ROS in the early stage of gentamicin and ampicillin action, and the regulation patterns of genes in the key pathway were consistent. sdhC/D are key genes in the early ROS release process of bacteria. Our study provides a basis for the search of ROS-related enhancers of antimicrobial action. | 2022 | 35933647 |
| 103 | 2 | 0.8365 | IL-1 receptor regulates S100A8/A9-dependent keratinocyte resistance to bacterial invasion. Previously, we reported that epithelial cells respond to exogenous interleukin (IL)-1α by increasing expression of several genes involved in the host response to microbes, including the antimicrobial protein complex calprotectin (S100A8/A9). Given that S100A8/A9 protects epithelial cells against invading bacteria, we studied whether IL-1α augments S100A8/A9-dependent resistance to bacterial invasion of oral keratinocytes. When inoculated with Listeria monocytogenes, human buccal epithelial (TR146) cells expressed and released IL-1α. Subsequently, IL-1α-containing media from Listeria-infected cells increased S100A8/A9 gene expression in naïve TR146 cells an IL-1 receptor (IL-1R)-dependent manner. Incubation with exogenous IL-1α decreased Listeria invasion into TR146 cells, whereas invasion increased with IL-1R antagonist. Conversely, when S100A8/A9 genes were knocked down using short hairpin RNA (shRNA), TR146 cells responded to exogenous IL-1α with increased intracellular bacteria. These data strongly suggest that infected epithelial cells release IL-1α to signal neighboring keratinocytes in a paracrine manner, promoting S100A8/A9-dependent resistance to invasive L. monocytogenes. | 2012 | 22031183 |
| 8828 | 3 | 0.8357 | Phenylalanine 4-Hydroxylase Contributes to Endophytic Bacterium Pseudomonas fluorescens' Melatonin Biosynthesis. Melatonin acts both as an antioxidant and as a growth regulatory substance in plants. Pseudomonas fluorescens endophytic bacterium has been shown to produce melatonin and increase plant resistance to abiotic stressors through increasing endogenous melatonin. However, in bacteria, genes are still not known to be melatonin-related. Here, we reported that the bacterial phenylalanine 4-hydroxylase (PAH) may be involved in the 5-hydroxytryptophan (5-HTP) biosynthesis and further influenced the subsequent production of melatonin in P. fluorescens. The purified PAH protein of P. fluorescens not only hydroxylated phenylalanine but also exhibited l-tryptophan (l-Trp) hydroxylase activity by converting l-Trp to 5-HTP in vitro. However, bacterial PAH displayed lower activity and affinity for l-Trp than l-phenylalanine. Notably, the PAH deletion of P. fluorescens blocked melatonin production by causing a significant decline in 5-HTP levels and thus decreased the resistance to abiotic stress. Overall, this study revealed a possible role for bacterial PAH in controlling 5-HTP and melatonin biosynthesis in bacteria, and expanded the current knowledge of melatonin production in microorganisms. | 2021 | 34868217 |
| 8824 | 4 | 0.8356 | Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly. The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance. | 2024 | 38618721 |
| 33 | 5 | 0.8349 | Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. The sericulture industry faces substantial economic losses due to severe pathogenic infections caused by fungi, viruses, and bacteria. The development of transgenic silkworms against specific pathogens has been shown to enhance disease resistance against a particular infection. A single gene or its products that can confer protection against multiple pathogens is required. In an attempt to develop silkworms with enhanced immunity against multiple pathogens, we generated transgenic silkworm lines with an overexpressed NF-kB transcription factor, Relish 1, under two different promoters. Separately, a potent anti-fungal gene, Drosomycin, was also expressed in transgenic silkworms. Both Relish 1 and Drosomycin transgenic silkworms had single copy genomic integration, and their mRNA expression levels were highly increased after infection with silkworm pathogens. The overexpression of the Relish 1 in transgenic silkworms resulted in the upregulation of several defense-related genes, Cecropin B, Attacin, and Lebocin, and showed enhanced resistance to Nosema bombycis (microsporidian fungus), Nucleopolyhedrovirus (BmNPV), and bacteria. The Drosomycin expressing transgenic silkworms showed elevated resistance to N. bombycis and bacteria. These findings demonstrate the role of Relish 1 in long-lasting protection against multiple pathogens in silkworms. Further, the successful introduction of a foreign gene, Drosomycin, also led to improved disease resistance in silkworms. | 2022 | 35098482 |
| 54 | 6 | 0.8348 | Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance. | 2022 | 35563637 |
| 608 | 7 | 0.8344 | Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF. | 2021 | 34439488 |
| 541 | 8 | 0.8340 | A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. | 2016 | 27105425 |
| 8186 | 9 | 0.8339 | Tumor-infiltrating bacteria disrupt cancer epithelial cell interactions and induce cell-cycle arrest. Tumor-infiltrating bacteria are increasingly recognized as modulators of cancer progression and therapy resistance. We describe a mechanism by which extracellular intratumoral bacteria, including Fusobacterium, modulate cancer epithelial cell behavior. Spatial imaging and single-cell spatial transcriptomics show that these bacteria predominantly localize extracellularly within tumor microniches of colorectal and oral cancers, characterized by reduced cell density, transcriptional activity, and proliferation. In vitro, Fusobacterium nucleatum disrupts epithelial contacts, inducing G0-G1 arrest and transcriptional quiescence. This state confers 5-fluorouracil resistance and remodels the tumor microenvironment. Findings were validated by live-cell imaging, spatial profiling, mouse models, and a 52-patient colorectal cancer cohort. Transcriptomics reveals downregulation of cell cycle, transcription, and antigen presentation genes in bacteria-enriched regions, consistent with a quiescent, immune-evasive phenotype. In an independent rectal cancer cohort, high Fusobacterium burden correlates with reduced therapy response. These results link extracellular bacteria to cancer cell quiescence and chemoresistance, highlighting microbial-tumor interactions as therapeutic targets. | 2025 | 41106380 |
| 36 | 10 | 0.8337 | Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different. | 2021 | 35055983 |
| 8 | 11 | 0.8334 | The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease. | 2020 | 33180701 |
| 28 | 12 | 0.8333 | Screening of rice (Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. PR genes, a type of genetic marker, are constitutively expressed at background levels, while being easily inducible by pathogenic bacteria. By using a yeast two-hybrid technique, four rice (Oryza sativa L.) OsPR1b-interacting factors were screened. Homozygous plants overexpressing OsPR1b were prepared by transgenic technology. We postulated that OsPR1b may participate in the resistance signaling pathway of rice. Of simultaneous treatments with hormones and pathogenic bacteria, exogenously applying JA and ET significantly increased the expression level of OsPR1b genes in seedlings. Compared with the control group that was inoculated with water, inoculation with a mixture of water and pathogenic bacteria hardly affected the expression level of OsPR1b gene, while cotreatment with SA and pathogenic bacteria slightly upregulated the expression level. However, cotreatment with JA or ET and pathogenic bacteria managed to significantly upregulate the expression level of the OsPR1b gene by 4.8 or 5.7 fold. PR genes, which are sensitive, are prone to many unknown factors during expression, and the detailed regulatory mechanisms in rice still require in-depth studies. | 2015 | 25867332 |
| 6008 | 13 | 0.8330 | Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment. | 2023 | 37810750 |
| 42 | 14 | 0.8330 | Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants. | 2009 | 19522564 |
| 8736 | 15 | 0.8329 | Effects of intracanal irrigant MTAD Combined with nisin at sub-minimum inhibitory concentration levels on Enterococcus faecalis growth and the expression of pathogenic genes. Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. | 2014 | 24603760 |
| 546 | 16 | 0.8328 | Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BACKGROUND: Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. RESULTS: In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. CONCLUSIONS: This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation. | 2011 | 21569462 |
| 547 | 17 | 0.8327 | Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. | 2007 | 17586628 |
| 9029 | 18 | 0.8326 | The Effect of Benzyl Isothiocyanate on the Expression of Genes Encoding NADH Oxidase and Fibronectin-Binding Protein in Oral Streptococcal Biofilms. Recent studies have shown that antimicrobial treatment results in up- or down regulation of several virulence-associated genes in bacterial biofilms. The genes encoding NADH oxidase (nox) and fibronectin-binding protein (fbp) are known to play important roles in biofilm growth of some oral bacterial species. The objective was to study the effect of benzyl isothiocyanate (BITC), an antimicrobial agent from Miswak plant, on the expression of nox and fbp genes in some oral streptococci. The biofilms were treated with BITC and mRNA expression of nox and fbp genes was measured by comparative ΔΔCt method. The highest amount of biofilm mass was produced by A. defectiva, followed by S. gordonii, S. mutans, G. elegans and G. adiacens. Upon treatment with BITC, S. gordonii biofilms showed highest folds change in mRNA expression for both fbp and nox genes followed by S. mutans, A. defectiva, and G. adiacens. G. elegans mRNA levels for nox were extremely low. In conclusion, BITC treatment of the biofilms caused an upregulation of biofilm-associated genes fbp and nox genes in most of the tested species suggesting the significance of these genes in biofilm lifestyle of these oral bacteria and needs further investigation to understand if it contributes to antimicrobial resistance. | 2022 | 35478497 |
| 605 | 19 | 0.8326 | Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species. | 2017 | 28397370 |