# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6507 | 0 | 0.9958 | What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development. | 2025 | 40558133 |
| 6506 | 1 | 0.9957 | Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks. | 2024 | 39944563 |
| 6508 | 2 | 0.9956 | Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies. | 2024 | 39611949 |
| 6665 | 3 | 0.9953 | A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future. | 2025 | 41157271 |
| 8553 | 4 | 0.9952 | Unveiling the power of nanotechnology: a novel approach to eliminating antibiotic-resistant bacteria and genes from municipal effluent. The increasing global population and declining freshwater resources have heightened the urgency of ensuring safe and accessible water supplies.Query The persistence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in municipal effluents poses a significant public health threat, exacerbated by the widespread use of antibiotics and the inadequate removal of contaminants in wastewater treatment facilities. Conventional treatment methods often fail to eliminate these emerging pollutants, facilitating their entry into agricultural systems and natural water bodies, thereby accelerating the spread of antimicrobial resistance. To address these challenges, interdisciplinary strategies in water treatment are essential. Nanotechnology has emerged as a promising approach due to its unique physicochemical properties, biocompatibility, and high efficiency in detecting and removing biological and chemical contaminants. Various nanomaterials, including graphene-based structures, Carbon nanotubes (CNTs), noble metal nanoparticles (gold (Au) and silver (Ag)), silicon and chitosan-based nanomaterials, as well as titanium and Zinc oxide (ZnO) nanomaterials, demonstrate potent antimicrobial effects. Moreover, nanosensors and photocatalysts utilizing these nanomaterials enable precise detection and effective degradation of ARB and ARGs in wastewater. This review examines the mechanisms by which nanotechnology-based materials can mitigate the risks associated with antibiotic resistance in urban effluents, focusing on their applications in pathogen detection, pollutant removal, and wastewater treatment. By integrating nanotechnology into existing treatment frameworks, we can significantly enhance the efficiency of water purification processes, ultimately contributing to global water security and the protection of public health. | 2025 | 40512401 |
| 6397 | 5 | 0.9951 | Microplastics and antibiotic resistance genes as rising threats: Their interaction represents an urgent environmental concern. Microplastics (MPs) have been reported to be emerging contaminant of different environmental niches like air, soil, and water. When exposed to these environments, MPs interact with already existing antibiotics to create combined pollution that can harm organisms. MPs have garnered significant attention in academic circles due to their ability to adsorb antibiotics. This review article explores different dimensions of MPs, antibiotic resistance genes (ARGs), and the interplay between MPs, antibiotics, and antibiotic-resistant bacteria (ARB), emphasizing their interconnection with soil and water pollution. It also summarizes the mechanisms behind the interaction between antibiotics and MPs, detailing various physical and chemical interactions. Additionally, it outlines the pathways through which MPs and ARGs complexes spread, offering insights for future research and solutions to tackle compound pollution. The article concludes by providing targeted strategies to mitigate the environmental and public health risks posed by MP-associated ARG transmission, highlighting the need for integrated pollution control, advanced monitoring techniques, and stricter regulatory policies. | 2025 | 40756460 |
| 6446 | 6 | 0.9950 | Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. BACKGROUND: The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW: This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW: Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings. | 2025 | 39414225 |
| 6664 | 7 | 0.9950 | Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance. | 2025 | 40066274 |
| 6530 | 8 | 0.9949 | Microplastic-associated pathogens and antimicrobial resistance in environment. The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects. | 2022 | 34813845 |
| 6534 | 9 | 0.9949 | Antibiotic resistance dissemination in soil ecosystems: deep understanding for effective management and global health protection. Antibiotic resistance poses a significant threat to global health, extending beyond clinical settings into environmental reservoirs such as soil, where resistant bacteria persist and evolve. Current efforts focus on understanding the origins and implications of antibiotic resistance in soil ecosystems. It defines antibiotic resistance within an environmental context and highlights soil as a critical reservoir for antibiotic-resistant genes (ARGs). Key sources of antibiotics in soil are identified, including agricultural practices, medical waste, and municipal and industrial effluents. The classification and mechanisms of ARGs are outlined, along with their transmission pathways, particularly within soil biofilms, which play a crucial role in gene transfer and microbial protection. The interplay between soil microbial communities and antibiotic resistance is discussed, emphasizing its potential risks to human health, including infectious diseases and food safety concerns. Strategies for mitigating antibiotic resistance in soil are presented, focusing on optimizing antibiotic usage, developing alternatives, and enhancing degradation mechanisms. This review underscores the need for interdisciplinary research to deepen understanding of soil microbial diversity and its connection to antibiotic resistance, emphasizing integrated efforts to safeguard soil and human health. | 2025 | 41166035 |
| 6417 | 10 | 0.9949 | Fate of environmental pollutants: A review. A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes. | 2020 | 32671926 |
| 6533 | 11 | 0.9949 | The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. | 2025 | 40867959 |
| 6425 | 12 | 0.9949 | Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources. | 2024 | 38699475 |
| 6535 | 13 | 0.9949 | Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies. | 2024 | 39028459 |
| 6472 | 14 | 0.9948 | Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences. | 2014 | 24279909 |
| 6537 | 15 | 0.9948 | Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity. | 2025 | 40284775 |
| 6393 | 16 | 0.9948 | A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT. | 2023 | 36586329 |
| 6532 | 17 | 0.9948 | Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments. | 2024 | 39384008 |
| 6418 | 18 | 0.9948 | Antibiotic resistance genes in anaerobic digestion: Unresolved challenges and potential solutions. Antimicrobial resistance (AMR) threatens public health, necessitating urgent efforts to mitigate the global impact of antibiotic resistance genes (ARGs). Anaerobic digestion (AD), known for volatile solid reduction and energy generation, also presents a feasible approach for the removal of ARGs. This review encapsulates the existing understanding of ARGs and antibiotic-resistant bacteria (ARB) during the AD process, highlighting unresolved challenges pertaining to their detection and quantification. The questions raised and discussed include: Do current ARGs detection methods meet qualitative and quantitative requirements? How can we conduct risk assessments of ARGs? What happens to ARGs when they come into co-exposure with other emerging pollutants? How can the application of internal standards bolster the reliability of the AD resistome study? What are the potential future research directions that could enhance ARG elimination? Investigating these subjects will assist in shaping more efficient management strategies that employ AD for effective ARG control. | 2025 | 39826759 |
| 6403 | 19 | 0.9948 | Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments. | 2024 | 37788551 |