# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5449 | 0 | 0.8821 | Antibiotic susceptibility and resistance genes profiles of Vagococcus salmoninarum in a rainbow trout (Oncorhyncus mykiss, Walbaum) farm. Disease outbreaks negatively affect fish production. Antimicrobial agents used in the treatment of diseases become ineffective over time because of antibiotic resistance developed by bacteria distributed in the aquaculture environment. This study was conducted for 4 months (cold period) in a fish farm to detect the fish disease, cold water streptococcosis. In the study, four brood stock showing disease signs were detected. Bacteria isolates were obtained and identified as Vagococcus salmoninarum. Antimicrobial susceptibility of V. salmoninarum was tested and antibiotic resistance gene profiles of V. salmoninarum isolates were screened. The phylogenetic relation of the isolates with the previously reported strains was evaluated. Antibiotic resistance developed by pathogenic bacteria is distributed in the aquaculture environment. The transfer of resistance genes from one bacterium to another is very common. This situation causes the antimicrobial agents used in the treatment of diseases to become ineffective over time. The disc diffusion test showed that all four isolates developed resistance to 13 (FFC30, AX25, C30, E15, CF30, L2, OX1, S10, T30, CRO30, CC2, PT15 and TY15) of the evaluated antibiotics and were about to develop resistance to six others (AM 10, FM 300, CFP75, SXT25, APR15 and TE30). Furthermore, antibiotic resistance genes tetA, sul1, sul2, sul3, dhfr1, ereB and floR were detected in the isolated strain. Moreover, the phylogenetic analysis showed that isolated V. salmoninarum strain (ESN1) was closely related to the bacterial strains isolated from USA and Jura. | 2024 | 38560471 |
| 6005 | 1 | 0.8710 | Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment. | 2025 | 40873998 |
| 8717 | 2 | 0.8653 | Protective Effect of Pediococcus pentosaceus Li05 on Constipation via TGR5/TPH1/5-HT Activation. Pediococcus pentosaceus Li05, a strain of lactic acid bacteria isolated from the faeces of healthy volunteers, exhibited potential protective effects against various diseases. This study performed third-generation sequencing and detailed characterisation of its genome. The Li05 chromosome harboured conserved genes associated with acid resistance (atp), bile salt resistance (bsh), oxidative stress resistance (hsl, dltA, and et al.), and adhesion (nrd, gap, and et al.), whereas the plasmid did not contain antibiotic resistance or virulence genes. Following intervention with Li05 in loperamide-induced constipated mice, constipation symptoms improved. Meanwhile, alterations in gut microbiota, increased BSH activity in faeces, and modifications to the faecal bile acid profile were observed. Additionally, expression levels of TGR5 and TPH1 in the colon of the mice increased, leading to elevated 5-HT levels. When the TGR5 gene was knocked out or the TPH1 inhibitor LX1606 was administered to suppress 5-HT synthesis in constipated mice, the beneficial effects of Li05 on gastrointestinal motility and mucus secretion were reversed. Culturing intestinal organoids demonstrated that increased bile acids such as DCA, Iso-LCA, and EALCA could enhance 5-HT levels through the TGR5/TPH1 axis. Therefore, we concluded that Li05 regulated bile acid metabolism, subsequently increasing 5-HT levels through the TGR5/TPH1 axis, thus alleviating constipation. | 2025 | 41159760 |
| 810 | 3 | 0.8647 | Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome. | 2021 | 34537868 |
| 6053 | 4 | 0.8646 | Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development. | 2014 | 25117002 |
| 104 | 5 | 0.8639 | Bile Salt Hydrolases with Extended Substrate Specificity Confer a High Level of Resistance to Bile Toxicity on Atopobiaceae Bacteria. The bile resistance of intestinal bacteria is among the key factors responsible for their successful colonization of and survival in the mammalian gastrointestinal tract. In this study, we demonstrated that lactate-producing Atopobiaceae bacteria (Leptogranulimonas caecicola TOC12(T) and Granulimonas faecalis OPF53(T)) isolated from mouse intestine showed high resistance to mammalian bile extracts, due to significant bile salt hydrolase (BSH) activity. We further succeeded in isolating BSH proteins (designated LcBSH and GfBSH) from L. caecicola TOC12(T) and G. faecalis OPF53(T), respectively, and characterized their enzymatic features. Interestingly, recombinant LcBSH and GfBSH proteins exhibited BSH activity against 12 conjugated bile salts, indicating that LcBSH and GfBSH have much broader substrate specificity than the previously identified BSHs from lactic acid bacteria, which are generally known to hydrolyze six bile salt isomers. Phylogenetic analysis showed that LcBSH and GfBSH had no affinities with any known BSH subgroup and constituted a new BSH subgroup in the phylogeny. In summary, we discovered functional BSHs with broad substrate specificity from Atopobiaceae bacteria and demonstrated that these BSH enzymes confer bile resistance to L. caecicola TOC12(T) and G. faecalis OPF53(T). | 2022 | 36142891 |
| 627 | 6 | 0.8629 | Analysis of a gene family for PDF-like peptides from Arabidopsis. Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance. | 2021 | 34556705 |
| 5451 | 7 | 0.8628 | Two novel phages, Klebsiella phage GADU21 and Escherichia phage GADU22, from the urine samples of patients with urinary tract infection. Phages are found in a wide variety of places where bacteria exist including body fluids. The aim of the present study was to isolate phages from the urine samples of patients with urinary tract infection. The 10 urine samples were cultured to isolate bacteria and also used as phage sources against the isolated bacteria. From 10 urine samples with positive cultures, 3 phages were isolated (33%) and two of them were further studied. The Klebsiella phage GADU21 and Escherichia phage GADU22 phages infected Klebsiella pneumonia and Escherichia coli, respectively. Among the tested 14 species for host range analysis, the Klebsiella phage GADU21 was able to infect two species which are Klebsiella pneumonia and Proteus mirabilis, and Escherichia phage GADU22 was able to infect four species which are Shigella flexneri, Shigella sonnei and Escherichia coli. Among different isolates of the indicator bacteria for each phage, GADU21 infected half of the tested 20 Klebsiella pneumonia isolates while GADU22 infected 85% of the tested 20 E. coli isolates. The genome sizes and GC ratios were 75,968 bp and 44.4%, and 168,023 bp and 35.3% for GADU21 and GADU22, respectively. GADU21 and GADU22 were both lytic and had no antibiotic resistance and virulence genes. GADU21 was homologue with Klebsiella phage vB_KpP_FBKp27 but only 88% of the genome was covered by this phage. The non-covered parts of the GADU21 genome included genes for tail-fiber-proteins and HNH-endonuclease. GADU22 had 94.8% homology with Escherichia phage vB_Eco_OMNI12 and had genes for immunity proteins. Phylogenetic analysis showed GADU21 and GADU22 were members of Schitoviridae family and Efbeekayvirus genus and Straboviridae family and Tevenvirinae genus, respectively. VIRIDIC analysis classified these phages in new species clusters. Our study demonstrated the possibility to use infected body fluids as phage sources to isolate novel phages. GADU21 is the first reported Klebsiella phage isolated from human body fluid. The absence of virulence and antibiotic resistance genes in their genomes makes the phages a potential therapeutic tool against infections. | 2024 | 38238612 |
| 9999 | 8 | 0.8625 | Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR. Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria. | 1996 | 8593053 |
| 3017 | 9 | 0.8622 | The ancient small mobilizable plasmid pALWED1.8 harboring a new variant of the non-cassette streptomycin/spectinomycin resistance gene aadA27. The small mobilizable plasmid pALWED1.8 containing a novel variant of the streptomycin/spectinomycin resistance gene aadA27 was isolated from the permafrost strains of Acinetobacter lwoffii. The 4135bp plasmid carries mobА and mobC genes that mediate its mobilization by conjugative plasmids. The nucleotide sequences of mobА and mobC are similar to those of mobilization genes of the modern plasmid pRAY* and its variants, which contain aadB gene, and are widespread among the pathogenic strains of Acinetobacter baumannii. Almost identical pALWED1.8 variants were detected in modern environmental Аcinetobacter strains. A highly similar plasmid was revealed in a strain of Acinetobacter parvus isolated from mouse intestine. Furthermore, we discovered six previously unidentified variants of plasmids related to pALWED1.8 and pRAY* in public databases. In contrast to most known variants of aadA which are cassette genes associated with integrons, the aadA27 variant harbored by pALWED1.8 is a non-cassette, autonomously transcribed gene. Non-cassette aadA genes with 96% sequence identity to aadA27 were detected in the chromosomes of Acinetobacter gyllenbergii and several uncharacterized strains of Аcinetobacter sp. Moreover, we revealed that the autonomous aadA-like genes are present in the chromosomes of many gram-positive and gram-negative bacteria. The phylogenetic analysis of amino acid sequences of all identified AadA proteins showed the following: (i) cassette aadA genes form a separate monophyletic group and mainly reside on plasmids and (ii) chromosomal non-cassette aadA genes are extremely diverse and can be inherited both vertical and via horizontal gene transfer. | 2016 | 26896789 |
| 5387 | 10 | 0.8620 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 6087 | 11 | 0.8619 | Draft genome of Raoultella planticola, a high lead resistance bacterium from industrial wastewater. Isolation of heavy metals-resistant bacteria from their original habitat is a crucial step in bioremediation. Six lead (Pb) resistant bacterial strains were isolated and identified utilizing 16S rRNA to be Enterobacter ludwigii FACU 4, Shigella flexneri FACU, Microbacterium paraoxydans FACU, Klebsiella pneumoniae subsp. pneumonia FACU, Raoultella planticola FACU 3 and Staphylococcus xylosus FACU. It was determined that all these strains had their Minimum inhibitory concentration (MIC) to be 2500 ppm except R. planticola FACU 3 has a higher maximum tolerance concentration (MTC) up to 2700 ppm. We evaluated the survival of all six strains on lead stress, the efficiency of biosorption and lead uptake. It was found that R. planticola FACU 3 is the highest MTC and S. xylosus FACU was the lowest MTC in this evaluation. Therefore, transmission electron microscopy (TEM) confirmed the difference between the morphological responses of these two strains to lead stress. These findings led to explore more about the genome of R. planticola FACU 3 using illumine Miseq technology. Draft genome sequence analysis revealed the genome size of 5,648,460 bp and G + C content 55.8% and identified 5526 CDS, 75 tRNA and 4 rRNA. Sequencing technology facilitated the identification of about 47 genes related to resistance to many heavy metals including lead, arsenic, zinc, mercury, nickel, silver and chromium of R. planticola FACU 3 strain. Moreover, genome sequencing identified plant growth-promoting genes (PGPGs) including indole acetic acid (IAA) production, phosphate solubilization, phenazine production, trehalose metabolism and 4-hydroxybenzoate production genes and a lot of antibiotic-resistant genes. | 2023 | 36715862 |
| 5435 | 12 | 0.8614 | Distribution of fibronectin-binding protein genes (prtF1 and prtF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. Two hundred and seventy-two strains of Streptococcus pyogenes isolated from patients with invasive and noninvasive infections in Japan were evaluated for the prevalence of fibronectin-binding protein genes (prtF1 and prtF2). The possible associations of the genes with streptococcal pyrogenic exotoxin genes, macrolide resistance genes, and emm types were also evaluated. Overall, about 50% of S. pyogenes isolates carried fibronectin-binding protein genes. The prevalence of the prtF1 gene was significantly higher among isolates from noninvasive infections (71.4%) than among isolates from invasive infections (30.8%; P = 0.0037). Strains possessing both the prtF1 and prtF2 genes were more likely to be isolates from noninvasive infections than isolates from invasive infections (50.6% vs 15.4%; P = 0.019). S. pyogenes isolates with streptococcus pyrogenic exotoxin genes (speA and speZ) were more common among isolates without fibronectin-binding protein genes. The speC gene was more frequently identified among isolates with fibronectin-binding protein genes (P = 0.05). Strains belonging to emm75 or emm12 types more frequently harbored macrolide resistance genes than other emm types (P = 0.0094 and P = 0.043, respectively). Strains carrying more than one repeat at the RD2 region of the prtF1 gene and the FBRD region of the prtF2 gene were more prevalent among strains with macrolide resistance genes than among strains negative for macrolide resistance genes. These genes (i.e., the prtF1, prtF2, and spe genes) may enable host-bacteria interaction, and internalization in the host cell, but may not enable infection complications such as invasive diseases. | 2009 | 20012726 |
| 6028 | 13 | 0.8614 | Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces. Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines. | 2023 | 37484003 |
| 5220 | 14 | 0.8610 | The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen. The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species. | 2014 | 25317698 |
| 824 | 15 | 0.8610 | Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola. Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3. 0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria. | 1998 | 9726857 |
| 5132 | 16 | 0.8609 | The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India. An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems. | 2023 | 37626254 |
| 1260 | 17 | 0.8609 | Isolation, Identification, and Antimicrobial Susceptibilities of Bacteria from the Conjunctival Sacs of Dogs with Bacterial Conjunctivitis in Different Regions of Wuhan, China. In order to investigate the bacterial species present in the conjunctival sacs of dogs with bacterial conjunctivitis in Wuhan (Hongshan District, Wuchang District, Jiangxia District, and Huangpi District) and their resistance to aminoglycoside antibiotics, samples of conjunctival sac secretions were collected from 56 dogs with bacterial conjunctivitis in various regions of Wuhan. Drug susceptibility testing for aminoglycoside antibiotics was performed on the most commonly isolated gram-positive and gram-negative bacteria. The expression of two aminoglycoside modifying enzyme genes, aacA-aphD and aac (6')-Ib, and three 16S rRNA methyltransferase genes, rmtB, rmtE and npmA, were analyzed by PCR. The results showed that a total of 123 bacterial strains were cultured from 56 conjunctival sac secretion samples, with Staphylococcus being the most commonly isolated species, followed by Escherichia. Among them, 14 strains of Staphylococcus pseudointermedius were not resistant to tobramycin, amikacin, gentamicin or neomycin, but the resistance rates to streptomycin and kanamycin were 35.71% and 42.86%, respectively. Among them, 14 Escherichia coli strains were not resistant to tobramycin and gentamicin, but they showed high resistance rates to neomycin and kanamycin (both at 50%). The detection rate of the aacA-aphD gene in Staphylococcus pseudointermedius strains was 100%. The detection rates of the rmtB gene and rmtE gene in Escherichia coli were 85.71% and 28.57%, respectively, while the aac(6')-Ib gene and npmA gene were not detected. | 2025 | 39852896 |
| 8731 | 18 | 0.8607 | Isolation of Potato Endophytes and Screening of Chaetomium globosum Antimicrobial Genes. Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production. | 2022 | 35563004 |
| 6135 | 19 | 0.8607 | Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames. | 2016 | 26795356 |