SAFETY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
391600.9959Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like E. coli and pathogens like S. aureus. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.202439749146
604410.9958Phenotypic and Genetic Characterization and Production Abilities of Lacticaseibacillus rhamnosus Strain 484-A New Probiotic Strain Isolated From Human Breast Milk. Recent studies suggest that human breast milk (HBM) is a promising source of probiotic bacteria with potential applications in both medicine and the food industry. Probiotic bacteria, particularly species of the genus Lactobacillus, are classified as lactic acid bacteria (LAB). However, probiotic properties are strain-specific, as not all Lactobacillus strains exhibit health benefits or inhibit pathogens. This study evaluated the probiotic potential of a newly isolated strain, Lacticaseibacillus rhamnosus strain 484, derived from human milk. Phenotypic and genomic analyses were performed, with L. rhamnosus 1.0320 serving as a reference genome. We focused on strain safety for human use and potential health benefits. Strain 484 underwent probiotic characterization and demonstrated strong auto- and co-aggregation abilities, contributing to effective pathogenic bacteria inhibition. The strain also showed bile tolerance, antibiotic sensitivity, and lacked hemolytic and catalase activity, indicating safety and suitability profiles for oral administration. Its resistance to low pH and bile salts indicated survival during gastrointestinal transit and intestinal colonization. Notably, cell surface hydrophobicity (CSH) exceeded that of the well-known L. rhamnosus GG strain, potentially enhancing adhesion to intestinal epithelial cells. Genomic analysis confirmed no antibiotic resistance genes (ARGs) and plasmids, suggesting genetic stability. Overall, L. rhamnosus 484 appears to be a safe and promising probiotic candidate with potential applications in both medical and food-related fields, particularly for oral use in preventing and controlling common pathogens.202541019172
602820.9955Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces. Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.202337484003
604330.9955Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. AIMS: This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS: Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS: Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.202032500572
664540.9955Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.202134574202
602050.9955Safety evaluation of Lactococcus lactis IDCC 2301 isolated from homemade cheese. For applications of microorganisms as probiotics in the food industry, safety evaluation has increasingly become important to ensure the health of consumers. Although people have been using various lactic acid bacteria for different purposes, some studies have reported that certain lactic acid bacteria exhibit properties of virulence and produce toxic compounds. Thus, it is necessary to examine the characteristics associated with lactic acid bacteria that are safe for use as probiotics. This research aimed to assess the safety of Lactococcus lactis IDCC 2301 isolated from homemade cheese using in vitro and in vivo assays, including antibiotic resistance, hemolytic activity, toxin production, infectivity, and metabolic activity in immune-compromised animal species. The results demonstrated that the strain was susceptible to nine antibiotics suggested by the European Food Safety Authority (EFSA). Whole-genome analysis revealed that L. lactis IDCC 2301 neither has toxigenic genes nor harbors antibiotic resistance. Moreover, L. lactis IDCC 2301 showed neither hemolytic nor β-glucuronidase activity. Furthermore, none of the D-lactate and biogenic amines were produced by L. lactis IDCC 2301. Finally, it was demonstrated that there was no toxicity and mortality using single-dose oral toxicity tests in rats. These results indicate that L. lactis IDCC 2301 can be safely used as probiotics for human consumption.202235035910
391760.9954Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.201526002560
604270.9953Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a multifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions.202235267336
653780.9953Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity.202540284775
846790.9953The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.202235456875
3643100.9953Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. BACKGROUND: Antimicrobial resistance (AMR) is one of the biggest threats to public health. The food chain has been recognised as a vehicle for transmitting AMR bacteria. However, information about resistant strains isolated from African traditional fermented foods remains limited. Nono is a traditional, naturally fermented milk product consumed by many pastoral communities across West Africa. The main aim of this study was to investigate and determine the AMR patterns of lactic acid bacteria (LAB) involved in the traditional fermentation of milk for Nono production, and the presence of transferable AMR determinants. METHODS: One hundred (100) LAB isolates from Nono identified in a previous study as Limosilactobacillus fermentum, Lactobacillus delbrueckii, Streptococcus thermophilus, Streptococcus infantarius, Lentilactobacillus senioris, Leuconostoc pseudomesenteriodes, and Enterococcus thailandicus were investigated. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobials using the micro-broth dilution method. In addition, LAB isolates were screened for 28 antimicrobial resistance genes using PCR. The ability of LAB isolates to transfer tetracycline and streptomycin resistance genes to Enterococcus faecalis was also investigated. RESULTS: The experiments revealed variable antimicrobial susceptibility according to the LAB isolate and the antimicrobial tested. The tetracycline resistance genes tet(S) and tet(M) were detected in isolates Ent. thailandicus 52 and S. infantarius 10. Additionally, aad(E) encoding resistance to streptomycin was detected in Ent. thailandicus 52. The conjugation experiments suggested that the tet(S) and aad(E) genes were transferable in vitro from isolate Ent. thailandicus 52 to Ent. faecalis JH2-2. SIGNIFICANCE AND IMPACT: Traditional fermented foods play a significant role in the diet of millions of people in Africa, yet their contribution to the burden of AMR is largely unknown. This study highlights that LAB involved in traditionally fermented foods could be potential reservoirs of AMR. It also underscores the relevant safety issues of Ent. thailandicus 52 and S. infantarius 10 for use as starter cultures as they carry transferable AMR genes. Starter cultures are an essential aspect of improving the safety and quality attributes of African fermented foods. However, AMR monitoring is an important safety aspect in the selection of starter cultures for improving traditional fermentation technologies.202337237746
4715110.9953Genomic and stress resistance characterization of Lactiplantibacillus plantarum GX17, a potential probiotic for animal feed applications. Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of Lactiplantibacillus plantarum (L. plantarum) strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted. Based on the entire genome sequence analysis, 50 stress resistance genes and seven virulence factors were identified. The results of the phenotypic experiments showed that the strain had good resistance to high temperature, low temperature, acid, alkali, salt, artificial gastrointestinal fluid, and strong antioxidant capacity. Additionally, transcriptomic analysis confirmed that under stress conditions, the expression levels of key genes were significantly upregulated. Therefore, the phenotypic characteristics of L. plantarum GX17 align well with its genotypic features, demonstrating promising probiotic properties. This strain holds great potential as a probiotic candidate, and further investigation into its beneficial effects on human health is warranted. IMPORTANCE: In humans, Lactiplantibacillus plantarum may synergize with host microbiota to ameliorate dysbiosis-related pathologies, enhance immunomodulation, and facilitate micronutrient bioavailability. For livestock, its application could improve feed conversion ratios, suppress enteric pathogens through competitive exclusion, and mitigate antibiotic overuse, "a critical strategy in One Health frameworks." Further investigations into strain-specific mechanisms (e.g., postbiotic metabolites, quorum sensing regulation) are warranted to translate these genomic-phenotypic advantages into sustainable health solutions across species.202540919934
3225120.9953Comprehensive identification of pathogenic microbes and antimicrobial resistance genes in food products using nanopore sequencing-based metagenomics. Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.202438637066
6636130.9953The Contribution of Dairy Bedding and Silage to the Dissemination of Genes Coding for Antimicrobial Resistance: A Narrative Review. Antimicrobial resistance (AMR) is a concern in the dairy industry. Recent studies have indicated that bedding serves as a reservoir for antimicrobial-resistant bacteria and antimicrobial-resistance genes (ARGs), while silage has been proposed as another possible source. The impact of AMR in dairy farming can be significant, resulting in decreased productivity and economic losses for farmers. Several studies have highlighted the safety implications of AMR bacteria and genes in bedding and silage, emphasizing the need for further research on how housing, bedding, and silage management affect AMR in farm environments. Exposure to sub-lethal concentrations of antibiotics, such as those from contaminated bedding and silage, can prompt bacteria to develop resistance mechanisms. Thus, even if antimicrobial usage is diminished, ARGs may be maintained in the dairy farm environment. By implementing proactive measures to tackle AMR in dairy farming, we can take steps to preserve the health and productivity of dairy cattle while also protecting public health. This involves addressing the prudent use of antibiotics during production and promoting animal welfare, hygiene, and management practices in bedding and farm environments to minimize the risk of AMR development and spread. This narrative review compiles the growing research, positioning the contribution of bedding and silage to the prevalence and dissemination of AMR, which can elicit insights for researchers and policymakers.202439335078
6030140.9952Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.202438585699
6068150.9952Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. AIM: Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. METHODS AND RESULTS: Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. CONCLUSIONS: The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety.201424206097
4734160.9952Antibiotic resistance gene-free probiont administration to tilapia for growth performance and Streptococcus agalactiae resistance. BACKGROUND AND AIM: The rapid development of aquaculture as a major food sector is accompanied by challenges, including diseases that affect tilapia farming worldwide. One such infectious disease caused by Streptococcus agalactiae poses a serious threat to tilapia populations. Probiotics have emerged as a potentially safe preventive measure against S. agalactiae infection. However, antimicrobial resistance from antibiotic-resistant bacteria remains a concern because it can lead to the spread of resistant bacteria and serve as a reservoir of antibiotic-resistant genes in fishes and the surrounding environment. This study aimed to identify candidate probiotic bacteria capable of promoting tilapia growth, providing resistance to S. agalactiae infection, devoid of potential pathogenicity, and free from antibiotic resistance genes. Subsequently, the performance of these probiotic candidates in tilapia was evaluated. MATERIALS AND METHODS: Lactococcus garvieae, Priestia megaterium, Bacterium spp., Bacillus megaterium, Bacillus subtilis, and Bacillus pumilus were examined to assess their antibacterial properties, hemolytic patterns, and antibiotic resistance genes. We used the specific primers tetA, tetB, tetD, tetE, tetO, tetQ, ermB, and qnrS that were used for antibiotic resistance gene detection. In vivo probiotic efficacy was evaluated by administering probiotic candidates in tilapia feed at a concentration of 1 × 10(6) colonies/mL/50 g of feed over a 60-day maintenance period. Resistance to S. agalactiae infection was observed for 14 days after the challenge test. RESULTS: Lactococcus garvieae, P. megaterium, and Bacterium spp. were identified as promising probiotic candidates among the bacterial isolates. On the other hand, B. megaterium, B. subtilis, and B. pumilus carried resistance genes and exhibited a β hemolytic pattern, rendering them unsuitable as probiotic candidates. The selected probiotic candidates (L. garvieae, P. megaterium, and Bacterium spp.) demonstrated the potential to enhance tilapia growth, exhibited no pathogenic tendencies, and were free from antibiotic resistance genes. Supplementation with L. garvieae and Bacterium spp. enhanced tilapia resistance to S. agalactiae infection, whereas P. megaterium supplementation showed an insignificant survival rate compared with controls after the challenge test period. CONCLUSION: Probiotics, particularly L. garvieae, P. megaterium, and Bacterium spp., enhance growth and resistance against S. agalactiae infection, without harboring antibiotic resistance genes. Selecting probiotic candidates based on antibiotic resistance genes is essential to ensure the safety of fish, the environment, and human health.202338328352
3157170.9952Reservoirs of antimicrobial resistance genes in retail raw milk. BACKGROUND: It has been estimated that at least 3% of the USA population consumes unpasteurized (raw) milk from animal sources, and the demand to legalize raw milk sales continues to increase. However, consumption of raw milk can cause foodborne illness and be a source of bacteria containing transferrable antimicrobial resistance genes (ARGs). To obtain a comprehensive understanding of the microbiome and antibiotic resistome in both raw and processed milk, we systematically analyzed 2034 retail milk samples including unpasteurized milk and pasteurized milk via vat pasteurization, high-temperature-short-time pasteurization, and ultra-pasteurization from the United States using complementary culture-based, 16S rRNA gene, and metagenomic sequencing techniques. RESULTS: Raw milk samples had the highest prevalence of viable bacteria which were measured as all aerobic bacteria, coliform, and Escherichia coli counts, and their microbiota was distinct from other types of milk. 16S rRNA gene sequencing revealed that Pseudomonadaceae dominated raw milk with limited levels of lactic acid bacteria. Among all milk samples, the microbiota remained stable with constant bacterial populations when stored at 4 °C. In contrast, storage at room temperature dramatically enriched the bacterial populations present in raw milk samples and, in parallel, significantly increased the richness and abundance of ARGs. Metagenomic sequencing indicated raw milk possessed dramatically more ARGs than pasteurized milk, and a conjugation assay documented the active transfer of bla(CMY-2), one ceftazidime resistance gene present in raw milk-borne E. coli, across bacterial species. The room temperature-enriched resistome differed in raw milk from distinct geographic locations, a difference likely associated with regionally distinct milk microbiota. CONCLUSION: Despite advertised "probiotic" effects, our results indicate that raw milk microbiota has minimal lactic acid bacteria. In addition, retail raw milk serves as a reservoir of ARGs, populations of which are readily amplified by spontaneous fermentation. There is an increased need to understand potential food safety risks from improper transportation and storage of raw milk with regard to ARGs. Video Abstract.202032591006
7728180.9952Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.202439095404
4206190.9952Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan. Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.201424387636