RUMINANTS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
322800.9892Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants' gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.202134072124
516010.9892Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.202133589511
765720.9892Comparison of Fecal Antimicrobial Resistance Genes in Captive and Wild Asian Elephants. The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants.202337237762
774030.9891Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas. The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China.202539168909
518740.9891Recovery of 52 bacterial genomes from the fecal microbiome of the domestic cat (Felis catus) using Hi-C proximity ligation and shotgun metagenomics. We used Hi-C proximity ligation with shotgun sequencing to retrieve metagenome-assembled genomes (MAGs) from the fecal microbiomes of two domestic cats (Felis catus). The genomes were assessed for completeness and contamination, classified taxonomically, and annotated for putative antimicrobial resistance (AMR) genes.202337695121
315250.9889Daily fluctuation of Lactobacillus species and their antibiotic resistome in the colon of growing pigs. There are various types of bacteria inhabiting the intestine that help maintain the balance of the intestinal microbiota. Lactobacillus is one of the important beneficial bacteria and is widely used as a food starter and probiotic. In this study, we investigated the daily fluctuation of the colonic Lactobacillus species and their distribution of antibiotic resistance genes (ARGs) as well as antibiotic susceptibility in pigs. Metagenomic analysis revealed that genus Lactobacillus was one of the most dominant genera in the colon of growing pigs. Rhythmicity analysis revealed that 84 out of 285 Lactobacillus species exhibited rhythmic patterns. Lactobacillus johnsonii and Lactobacillus reuteri were the two most abundant lactobacilli with circadian oscillation, which increased during the day and decreased at night. The profile of the antibiotic resistome was modified over time within 24-h period. Elfamycin resistance genes were the most enriched class found in Lactobacillus. Furthermore, the seven strains of Lactobacillus isolated from the pig intestine mainly exhibited resistance to gentamicin, erythromycin, and lincomycin. The whole genome annotation of four Lactobacillus strains indicated the presence of multiple ARGs, including elfamycin resistance genes, however, the most abundant ARG was optrA in genome of four strains. These results indicate the presence of various Lactobacillus species harboring a large number of ARGs in the swine intestine. This implies that when using animal-derived lactobacilli, it is essential to assess antibiotic resistance to prevent further transmission between animals and the environment.202438336077
365460.9889Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen.202032961926
356870.9889Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Members of our group recently identified a new tetracycline resistance gene, tet(W), in three genera of rumen obligate anaerobes. Here, we show that tet(W) is also present in bacteria isolated from human feces. The tet(W) genes found in human Fusobacterium prausnitzii and Bifidobacterium longum isolates were more than 99.9% identical to those from a rumen isolate of Butyrivibrio fibrisolvens.200010681357
765880.9888Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023. Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.202438792807
773390.9888A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.202337125200
7170100.9888Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.202234600986
7717110.9888Altered microbiota, antimicrobial resistance genes, and functional enzyme profiles in the rumen of yak calves fed with milk replacer. Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources.202438014976
3222120.9888Differences in gut metagenomes between dairy workers and community controls: a cross-sectional study. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens as they undergo evolution prior to a spillover event. In light of this, we are interested in characterizing the microbiome and resistome of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of the human gut microbiome of 10 dairy farm workers and 6 community controls, supplementing these samples with additional publicly available gut metagenomes. We observed greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes in dairy workers' metagenomes, and lower average gene diversity. We also found evidence of commensal organism association with plasmid-mediated tetracycline resistance genes in both dairy workers and community controls (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). However, we did not find significant differences in the prevalence of resistance genes or virulence factors overall, nor differences in the taxonomic composition of dairy worker and community control metagenomes. CONCLUSIONS: This study presents the first metagenomics analysis of United States dairy workers, providing insights into potential risks of exposure to antibiotics and pathogens in animal farming environments. Previous metagenomic studies of livestock workers in China and Europe have reported increased abundance and carriage of antibiotic resistance genes in livestock workers. While our investigation found no strong evidence for differences in the abundance or carriage of antibiotic resistance genes and virulence factors between dairy worker and community control gut metagenomes, we did observe patterns in the abundance of tetracycline resistance genes and the prevalence of cephamycin resistance genes that is consistent with previous work.202337215025
6991130.9887Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs.202336436623
3223140.9887A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.202439033279
5142150.9886Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS: The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION: Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.201627769168
3221160.9886Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.202336624546
3653170.9886Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading.201931374082
7677180.9886Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms. Dairy farms are major reservoirs of zoonotic bacterial pathogens, which harbor antimicrobial resistance genes (ARGs), and raise critical questions about their dissemination on and off the farm environment. Here, we investigated the role of coprophagous muscid flies (Diptera: Muscidae) as carriers of zoonotic pathogens and antimicrobial resistance. We collected cow manure and flies on a dairy farm and used shotgun metagenomics to identify the presence of clinically relevant bacteria, virulence factors, and ARGs in both environments. Our results reveal that, although the fly microbiome is largely composed of manure-associated taxa, they also harbor specific insect-associated bacteria, which may be involved in nutrient provisioning to the host. Furthermore, we identifed shared ARGs, virulence factors, and zoonotic pathogens enriched within the fly gastrointestinal tract (GIT). Our study illustrates the potential flow of pathogenic microorganisms from manure to coprophagous flies, suggesting that flies may pose an important zoonotic threat on dairy farms.202540537478
7729190.9886Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics. Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18-86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.201728034542