# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7648 | 0 | 0.9912 | Bacterial Associations Across House Fly Life History: Evidence for Transstadial Carriage From Managed Manure. House flies (Diptera: Muscidae; Musca domestica L.) associate with microbe-rich substrates throughout life history. Because larvae utilize bacteria as a food source, most taxa present in the larval substrate, e.g., manure, are digested or degraded. However, some species survive and are present as third-instar larvae begin pupation. During metamorphosis, many bacteria are again lost during histolysis of the larval gut and subsequent remodeling to produce the gut of the imago. It has been previously demonstrated that some bacterial species survive metamorphosis, being left behind in the puparium, present on the body surface, or in the gut of the emerged adult. We used a combined culture-molecular approach to identify viable microbes from managed manure residue and a wild population of house fly larvae, pupae, puparia, and adults to assess transstadial carriage. All larval (10/10), pupal (10/10), and puparial (10/10) cultures were positive for bacteria. Several bacterial species that were present in larvae also were present either in pupae or puparia. Four viable bacterial species were detectable in 6 of 10 imagoes reared from manure. Of note is the apparent transstadial carriage of Bacillus sonorensis, which has been associated with milk spoilage at dairies, and Alcaligenes faecalis, which can harbor numerous antibiotic resistance genes on farms. The potential of newly emerged flies to harbor and disseminate bacteria from managed manure on farms is an understudied risk that deserves further evaluation. | 2016 | 26798138 |
| 3737 | 1 | 0.9911 | In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis. The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10(-7), 1.4×10(-7), and 1.3×10(-8), respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics. | 2012 | 23124749 |
| 4228 | 2 | 0.9908 | Resistance to antibiotics in the normal flora of animals. The normal bacterial flora contains antibiotic resistance genes to various degrees, even in individuals with no history of exposure to commercially prepared antibiotics. Several factors seem to increase the number of antibiotic-resistant bacteria in feces. One important factor is the exposure of the intestinal flora to antibacterial drugs. Antibiotics used as feed additives seem to play an important role in the development of antibiotic resistance in normal flora bacteria. The use of avoparcin as a feed additive has demonstrated that an antibiotic considered "safe" is responsible for increased levels of antibiotic resistance in the normal flora enterococci of animals fed with avoparcin and possibly in humans consuming products from these animals. However, other factors like stress from temperature, crowding, and management also seem to contribute to the occurrence of antibiotic resistance in normal flora bacteria. The normal flora of animals has been studied with respect to the development of antibiotic resistance over four decades, but there are few studies with the intestinal flora as the main focus. The results of earlier studies are valuable when focused against the recent understanding of mobile genetics responsible for bacterial antibiotic resistance. New studies should be undertaken to assess whether the development of antibiotic resistance in the normal flora is directly linked to the dramatic increase in antibiotic resistance of bacterial pathogens. Bacteria of the normal flora, often disregarded scientifically, should be studied with the intention of using them as active protection against infectious diseases and thereby contributing to the overall reduction of use of antibioties in both animals and humans. | 2001 | 11432415 |
| 3736 | 3 | 0.9907 | TRANSFER OF DRUG RESISTANCE BETWEEN ENTERIC BACTERIA INDUCED IN THE MOUSE INTESTINE. Kasuya, Morimasa (Nagoya University School of Medicine, Nagoya, Japan). Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J. Bacteriol. 88:322-328. 1964.-Transfer of multiple drug resistance in the intestines of germ-free and conventional mice was studied with strains of Shigella, Escherichia, and Klebsiella. The transfer experiment was carried out under antibiotic-free conditions to eliminate the production of drug-resistant bacteria by antibiotics. All resistance factors (chloramphenicol, streptomycin, tetracycline, and sulfathiazole) were transferred with ease in the intestinal tracts of mice, when donors and recipients multiplied freely, and acquired resistance was further transferred to other sensitive enteric bacteria in the intestinal tract. Bacteria to which resistance factors were transferred showed, in most of the experiments, exactly the same level and pattern of resistance as the donors. Based on the above, a hypothesis that the same process may possibly occur in the human intestine is presented. | 1964 | 14203347 |
| 4567 | 4 | 0.9907 | Changes in multidrug resistance of enteric bacteria following an intervention to reduce antimicrobial resistance in dairy calves. An intervention study was conducted to determine whether discontinuing the feeding of milk replacer medicated with oxytetracycline and neomycin to preweaned calves reduced antimicrobial resistance in Salmonella, Campylobacter, and Escherichia coli bacteria. Results demonstrated that the intervention did reduce multidrug resistance in these bacteria but that other factors also influenced multidrug resistance. | 2009 | 19846639 |
| 3582 | 5 | 0.9907 | Investigating the transmissibility of tet(W) in bifidobacteria exposed to acid and bile stress. Transfer of antibiotic resistance genes from probiotic bacteria to pathogens poses a safety concern. Orally administered probiotics are exposed to stressful conditions during gastrointestinal transit. In this study, filter mating experiments were performed to investigate the potential role of exposure of Bifidobacterium isolates to acid and bile stress on the transfer of a tetracycline resistance gene, tet(W), to Enterococcus faecalis ATCC 51299. No E. faecalis transconjugants were obtained after mating with either stressed or unstressed Bifidobacterium, thereby suggesting that tet(W) could not be transferred as a result of exposure to gastrointestinal stresses. | 2018 | 29662736 |
| 9089 | 6 | 0.9906 | An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens. | 2020 | 33258450 |
| 4278 | 7 | 0.9906 | Effective antibiotic dosing in the presence of resistant strains. Mathematical models can be very useful in determining efficient and successful antibiotic dosing regimens. In this study, we consider the problem of determining optimal antibiotic dosing when bacteria resistant to antibiotics are present in addition to susceptible bacteria. We consider two different models of resistance acquisition, both involve the horizontal transfer (HGT) of resistant genes from a resistant to a susceptible strain. Modeling studies on HGT and study of optimal antibiotic dosing protocols in the literature, have been mostly focused on transfer of resistant genes via conjugation, with few studies on HGT via transformation. We propose a deterministic ODE based model of resistance acquisition via transformation, followed by a model that takes into account resistance acquisition through conjugation. Using a numerical optimization algorithm to determine the 'best' antibiotic dosing strategy. To illustrate our optimization method, we first consider optimal dosing when all the bacteria are susceptible to the antibiotic. We then consider the case where resistant strains are present. We note that constant periodic dosing may not always succeed in eradicating the bacteria while an optimal dosing protocol is successful. We determine the optimal dosing strategy in two different scenarios: one where the total bacterial population is to be minimized, and the next where we want to minimize the bacterial population at the end of the dosing period. We observe that the optimal strategy in the first case involves high initial dosing with dose tapering as time goes on, while in the second case, the optimal dosing strategy is to increase the dosing at the beginning of the dose cycles followed by a possible dose tapering. As a follow up study we intend to look at models where 'persistent' bacteria may be present in additional to resistant and susceptible strain and determine the optimal dosing protocols in this case. | 2022 | 36215219 |
| 4637 | 8 | 0.9906 | What Differentiates Probiotic from Pathogenic Bacteria? The Genetic Mobility of Enterococcus faecium Offers New Molecular Insights. Enterococcus faecium is a lactic acid bacterium with applications in food engineering and nutrigenomics, including as starter cultures in fermented foods. To differentiate the E. faecium probiotic from pathogenic bacteria, physiological analyses are often used but they do not guarantee that a bacterial strain is not pathogenic. We report here new findings and an approach based on comparison of the genetic mobility of (1) probiotic, (2) pathogenic, and (3) nonpathogenic and non-probiotic strains, so as to differentiate probiotics, and inform their safe use. The region of the 16S ribosomal DNA (rDNA) genes of different E. faecium strains native to Pernambuco-Brazil was used with the GenBank query sequence. Complete genomes were selected and divided into three groups as noted above to identify the mobile genetic elements (MGEs) (transposase, integrase, conjugative transposon protein and phage) and antibiotic resistance genes (ARGs), and to undertake pan-genome analysis and multiple genome alignment. Differences in the number of MGEs were found in ARGs, in the presence and absence of the genes that differentiate E. faecium probiotics and pathogenic bacteria genetically. Our data suggest that genetic mobility appears to be informative in differentiating between probiotic and pathogenic strains. While the present findings are not necessarily applicable to all probiotics, they offer novel molecular insights to guide future research in nutrigenomics, clinical medicine, and food engineering on new ways to differentiate pathogenic from probiotic bacteria. | 2020 | 32762606 |
| 7693 | 9 | 0.9906 | Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria. The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. IMPORTANCE: The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria and evaluated their genetic mobility to other human gut commensal microorganisms. | 2017 | 27864179 |
| 6643 | 10 | 0.9906 | Microbiological Food Safety of Seaweeds. The use of seaweeds in the human diet has a long history in Asia and has now been increasing also in the western world. Concurrent with this trend, there is a corresponding increase in cultivation and harvesting for commercial production. Edible seaweed is a heterogenous product category including species within the green, red, and brown macroalgae. Moreover, the species are utilized on their own or in combinatorial food products, eaten fresh or processed by a variety of technologies. The present review summarizes available literature with respect to microbiological food safety and quality of seaweed food products, including processing and other factors controlling these parameters, and emerging trends to improve on the safety, utilization, quality, and storability of seaweeds. The over- or misuse of antimicrobials and the concurrent development of antimicrobial resistance (AMR) in bacteria is a current worldwide health concern. The role of seaweeds in the development of AMR and the spread of antimicrobial resistance genes is an underexplored field of research and is discussed in that context. Legislation and guidelines relevant to edible seaweed are also discussed. | 2021 | 34829000 |
| 3924 | 11 | 0.9906 | Antimicrobial resistance determinants in silage. Animal products may play a role in developing and spreading antimicrobial resistance in several ways. On the one hand, residues of antibiotics not adequately used in animal farming can enter the human body via food. However, resistant bacteria may also be present in animal products, which can transfer the antimicrobial resistance genes (ARG) to the bacteria in the consumer's body by horizontal gene transfer. As previous studies have shown that fermented foods have a meaningful ARG content, it is indicated that such genes may also be present in silage used as mass feed in the cattle sector. In our study, we aspired to answer what ARGs occur in silage and what mobility characteristics they have? For this purpose, we have analyzed bioinformatically 52 freely available deep sequenced silage samples from shotgun metagenome next-generation sequencing. A total of 16 perfect matched ARGs occurred 54 times in the samples. More than half of these ARGs are mobile because they can be linked to integrative mobile genetic elements, prophages or plasmids. Our results point to a neglected but substantial ARG source in the food chain. | 2022 | 35347213 |
| 4776 | 12 | 0.9906 | Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Probiotics are microorganisms that confer beneficial effects on the host; nevertheless, before being allowed for human consumption, their safety must be verified with accurate protocols. In the genomic era, such procedures should take into account the genomic-based approaches. This study aims at assessing the safety traits of Bacillus coagulans GBI-30, 6086 integrating the most updated genomics-based procedures and conventional phenotypic assays. Special attention was paid to putative virulence factors (VF), antibiotic resistance (AR) genes and genes encoding enzymes responsible for harmful metabolites (i.e. biogenic amines, BAs). This probiotic strain was phenotypically resistant to streptomycin and kanamycin, although the genome analysis suggested that the AR-related genes were not easily transferrable to other bacteria, and no other genes with potential safety risks, such as those related to VF or BA production, were retrieved. Furthermore, no unstable elements that could potentially lead to genomic rearrangements were detected. Moreover, a workflow is proposed to allow the proper taxonomic identification of a microbial strain and the accurate evaluation of risk-related gene traits, combining whole genome sequencing analysis with updated bioinformatics tools and standard phenotypic assays. The workflow presented can be generalized as a guideline for the safety investigation of novel probiotic strains to help stakeholders (from scientists to manufacturers and consumers) to meet regulatory requirements and avoid misleading information. | 2016 | 26952108 |
| 4219 | 13 | 0.9906 | Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions. | 2022 | 35082060 |
| 3918 | 14 | 0.9906 | Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health. | 2013 | 24115946 |
| 3770 | 15 | 0.9906 | Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. OBJECTIVES: Antimicrobial resistance (AMR) in clinically relevant bacteria is a growing threat to public health globally. In these bacteria, antimicrobial resistance genes are often associated with mobile genetic elements (MGEs), which promote their mobility, enabling them to rapidly spread throughout a bacterial community. METHODS: The tool MobileElementFinder was developed to enable rapid detection of MGEs and their genetic context in assembled sequence data. MGEs are detected based on sequence similarity to a database of 4452 known elements augmented with annotation of resistance genes, virulence factors and detection of plasmids. RESULTS: MobileElementFinder was applied to analyse the mobilome of 1725 sequenced Salmonella enterica isolates of animal origin from Denmark, Germany and the USA. We found that the MGEs were seemingly conserved according to multilocus ST and not restricted to either the host or the country of origin. Moreover, we identified putative translocatable units for specific aminoglycoside, sulphonamide and tetracycline genes. Several putative composite transposons were predicted that could mobilize, among others, AMR, metal resistance and phosphodiesterase genes associated with macrophage survivability. This is, to our knowledge, the first time the phosphodiesterase-like pdeL has been found to be potentially mobilized into S. enterica. CONCLUSIONS: MobileElementFinder is a powerful tool to study the epidemiology of MGEs in a large number of genome sequences and to determine the potential for genomic plasticity of bacteria. This web service provides a convenient method of detecting MGEs in assembled sequence data. MobileElementFinder can be accessed at https://cge.cbs.dtu.dk/services/MobileElementFinder/. | 2021 | 33009809 |
| 3919 | 16 | 0.9906 | Detection of antibiotic resistance in probiotics of dietary supplements. BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance. | 2015 | 26370532 |
| 7647 | 17 | 0.9905 | Deeper Exploration of Gut Microbiome: Profile of Resistome, Virome and Viral Auxiliary Metabolic Genes of Three Ethnic Indian Groups. The current study explored the resistomes and viromes of three Indian ethnic populations: Jaisalmer, Khargone, and Ladakh. These three groups had different dietary habits and antibiotic consumption rates. A resistome analysis indicated that compared to the Jaisalmer (n = 10) group, the burden of antibiotic resistance genes in the gut microbiome was higher in the Khargone (n = 12) and Ladakh (n = 9) groups. However, correlational analysis factoring in food habits, healthcare, and economic status was not statistically significant due to the limited number of samples. A considerable number of antibiotic resistance genes (ARGs) were present in well-known gut commensals such as Bifidobacteriaceae, Acidomonococcaceae, etc., as retrieved directly by mapping to the Resfinder database using the Groot tool. Further, the raw reads were assembled using MEGAHIT, and putative bacteriophages were retrieved using the VIBRANT tool. Many of the classified bacteriophages of the virome revealed that bacteria belonging to the families Bifidobacteriaceae and Enterocococcaceae were their hosts. The prophages identified in these groups primarily contained auxiliary metabolic genes (AMGs) for primary amino acid metabolism. However, there were significantly fewer AMGs in the Ladakh group than in the Jaisalmer group (p < 0.05). None of the classified bacteriophages or prophages contained ARGs. This indicates that phages do not normally carry antibiotic resistance genes. | 2025 | 39158623 |
| 3925 | 18 | 0.9905 | Evaluating the health risk of probiotic supplements from the perspective of antimicrobial resistance. Antimicrobial resistance remains a public health threat. Probiotics harboring antimicrobial resistant genes (ARGs) have, in recent years, been considered a potential health risk. Studies conducted on probiotics from increasingly popular health supplements have raised the possibility of transmitting ARGs to commensals in the human gut, concomitantly establishing a reservoir of ARGs and risking acquisition by opportunistic pathogens. Building on our previous study that reported multiple antibiotic resistance in probiotics of health supplements, in this research, we have attempted to detect their ARGs that may account for resistant phenotypes. ARGs responsible for tetracycline, macrolide, aminoglycoside, and glycopeptide resistance were prevalent in probiotics. Through laboratory adaptive evolution studies, we also show that streptomycin-adapted probiotics gained resistance to erythromycin, tetracycline, and doxycycline more effectively than non-adapted ones. When co-incubated with Enterococcus faecalis, Escherichia coli, or Staphylococcus aureus on Caco-2 and/or HCT-116 cells, streptomycin resistance was transferred from the adapted probiotics to generate transconjugants at frequencies comparable to or higher than that of other studies conducted through filter mating. Consistently, ARGs conferring resistance to streptomycin (aadA) and erythromycin [erm(B)-1] were detected in E. coli and S. aureus transconjugants, respectively, after co-incubation with streptomycin-adapted probiotics on Caco-2 cells. aadA and erm(B)-1 were both detected in E. faecalis transconjugant after the same co-incubation on HCT-116 cells. Our data and future comparative genomics and metagenomics studies conducted on animal models and in healthy, immunocompromised, and/or antibiotic-treated human cohorts will contribute to a more comprehensive understanding of probiotic consumption, application, and safety. IMPORTANCE: Probiotics are becoming increasingly popular, with promising applications in food and medicine, but the risk of transferring ARGs to disease-causing bacteria has raised concerns. Our study detected ARGs in probiotics of health supplements conferring resistance to tetracycline, macrolide, aminoglycoside, and glycopeptide drugs. Streptomycin-adapted probiotics also gained resistance to other antibiotics more effectively than non-adapted ones. Importantly, we showed that streptomycin resistance could be transferred to other bacteria after co-incubation with probiotics on human intestinal cells. ARGs responsible for erythromycin and streptomycin resistance, which were initially absent in the recipient bacteria, were also detected in the transconjugants. Our data build the foundation for future studies that will be conducted on animal models and in humans and leveraging advanced metagenomics approaches to clarify the long-term health risk of probiotic consumption. | 2025 | 39655960 |
| 3917 | 19 | 0.9905 | Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. | 2015 | 26002560 |