# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6132 | 0 | 0.9765 | Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cu(r)) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cu(r) bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥ 92%) among different Cu(r) bacteria. | 2011 | 21515725 |
| 8808 | 1 | 0.9758 | Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer. | 2007 | 17100985 |
| 530 | 2 | 0.9754 | Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far. | 1993 | 8515229 |
| 4446 | 3 | 0.9753 | Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy. The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses. | 2015 | 26422376 |
| 7669 | 4 | 0.9752 | Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. The overuse of antibiotics has promoted the propagation and dissemination of antibiotic resistance genes (ARGs) in environment. Due to the dense human population and intensive activities in coastal areas, the health risk of ARGs in coastal environment is becoming a severe problem. To date, there still lacks of a quantitative method to assess properly the gross antibiotic resistance at microbial community level. Here, we collected sediment samples from Hangzhou Bay (HB), Taizhou Bay (TB), and Xiangshan Bay (XB) of the East China Sea for community-level ARGs analysis. Based on the 16S rRNA genes and predictive metagenomics, we predicted the composition of intrinsic ARGs (piARGs) and some related functional groups. Firstly, a total of 40 piARG subtypes, belonging to nine drug classes and five resistance mechanisms, were obtained, among which the piARGs encoding multidrug efflux pumps were the most dominant in the three bays. Secondly, XB had higher relative abundances of piARGs and pathogens than the other two bays, which posed higher potential health risk and implied the heavier impact of long-term maricultural activities in this bay. Thirdly, the co-occurrence network analysis identified that there were more connections between piARGs and some potential pathogenic bacteria. Several piARG subtypes (e.g., tetA, aacA, aacC, and aadK) distributed widely in the microbial communities. And finally, the microbial diversity correlated negatively with the relative abundance of piARGs. Oil, salinity, and arsenic had significant effects on the variations of piARGs and potential pathogenic bacteria. The abundance-weighted average ribosomal RNA operon (rrn) copy number of microbial communities could be regarded as an indicator to evaluate the antibiotic resistance status. In conclusion, this study provides a new insight on how to evaluate antibiotic resistance status and their potential risk in environment based on a quantitative analysis of microbial communities. | 2020 | 33123107 |
| 8639 | 5 | 0.9751 | Toad's survivability and soil microbiome alterations impacted via individual abundance. Artificial breeding is a valid strategy for the reverse of current extinction tendency in wild population of amphibian like toads. Considering public health, an alternative to antibiotics is demanded for ameliorating survival of toads during the culture period. Relying on the cognition of probiotics or antagonistic bacteria, the present work investigated viability and soil microorganism variations induced by distribution characteristic on toads using high-throughput sequencing technology. Comparison and analysis of soil metagenome from clustered and depopulated groups distinguished by toad behavior showed differences of bacterial community composition (e.g., Proteobacteria bacterium TMED72 and Nannocystis exedens) and antibiotic resistance genes involving antibiotic efflux and inactivation (e.g., mdtB and acrF). There were 18 and 10 distribution-typical genes independently enriched in Proteobacteria bacterium TMED72 and bacterium TMED88 of clustered group and Nannocystis exedens of depopulated group. In Nannocystis exedens, one of the distribution-typical genes was annotated as 6-phosphogluconate dehydrogenase acting role on bacterial growth restriction. It implied that, compared with the group emerging rare traces, the reduction of soil bacteria which possess genes retarding bacterial growth putatively impairs competitiveness to pathogenic bacteria and results in poor survivability of toads under clustering behavior. With the co-occurrence of virulence genes, more evidences are needed on the antagonistic bacteria Nannocystis exedens as antibiotic substitute. | 2025 | 40478395 |
| 3690 | 6 | 0.9751 | High Occurrence Rate of Tetracycline (TC)-Resistant Bacteria and TC Resistance Genes Relates to Microbial Diversity in Sediment of Mekong River Main Waterway. Spatial monitoring of tetracycline (TC)-resistant bacteria in sediments of the Mekong River watershed revealed that the main waterway showed a high occurrence rate of TC-resistant bacteria, whereas Tonle Sap Lake and the Sai Gon estuary did not. The Shannon index (H'), an indicator of ecological diversity, was calculated from denaturing gradient gel electrophoresis (DGGE) profiles, which indicated that the main waterway of the Mekong River had high microbial diversity (high H') compared to Tonle Sap Lake and the Sai Gon estuary; this diversity was positively correlated with the occurrence rate of TC-resistant bacteria. Analysis of ribosomal protection protein (RPP) genes tet(M), tet(S) and tet(W) in the same area also revealed that high diversity was positively correlated with the occurrence rate of RPP genes, suggesting that RPP genes are well conserved across various bacterial species. Further evidence of different genotypes of tet(M) suggests that the drug resistance genes likely have various origins, and are mixed in the sediment. Sediments in this area are therefore potential reservoirs of drug resistance genes. | 2008 | 21558701 |
| 9982 | 7 | 0.9748 | Family 6 glycosyltransferases in vertebrates and bacteria: inactivation and horizontal gene transfer may enhance mutualism between vertebrates and bacteria. Glycosyltransferases (GTs) control the synthesis and structures of glycans. Inactivation and intense allelic variation in members of the GT6 family generate species-specific and individual variations in carbohydrate structures, including histo-blood group oligosaccharides, resulting in anti-glycan antibodies that target glycan-decorated pathogens. GT6 genes are ubiquitous in vertebrates but are otherwise rare, existing in a few bacteria, one protozoan, and cyanophages, suggesting lateral gene transfer. Prokaryotic GT6 genes correspond to one exon of vertebrate genes, yet their translated protein sequences are strikingly similar. Bacterial and phage GT6 genes influence the surface chemistry of bacteria, affecting their interactions, including those with vertebrate hosts. | 2010 | 20870714 |
| 529 | 8 | 0.9748 | Crystal structure of the transcriptional repressor PagR of Bacillus anthracis. PagR is a transcriptional repressor in Bacillus anthracis that controls the chromosomal S-layer genes eag and sap, and downregulates the protective antigen pagA gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 A resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 degrees. | 2010 | 19926656 |
| 564 | 9 | 0.9748 | Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system. | 2014 | 24145139 |
| 4493 | 10 | 0.9747 | System to study horizontal gene exchange among microorganisms without cultivation of recipients. Ribosomal RNA genes are characterized by highly conserved sequences and are present in multiple copies in most prokaryotic chromosomes. In principle, therefore, they might serve as sites for homologous recombination between unrelated microorganisms. Plasmids containing 23S ribosomal gene sequences, from different bacteria, which had been interrupted by insertion of a kanamycin-resistance gene, were used to transform Acinetobacter sp. DSM587 (former name: Acinetobacter calcoaceticus BD413-ivl10). In all cases, homologies between the 23S rRNA genes of phylogenetically distant bacteria and Acinetobacter sp. DSM587 were sufficient for replacement recombination events. The integration events, resulting in inactivation of any one of the seven rrn operons of Acinetobacter sp. DSM587, had no observable influence on cell growth. These results suggest the possibility of rRNA genes serving as natural vehicles for horizontal gene transfer. They also provide the basis of a novel strategy to analyse gene transfer without selection or cultivation of recipient cells. Because of the highly conserved structure of bacterial rrn operons, recombination events subsequent to gene transfer can be readily identified by polymerase chain reaction amplification of the recombinant sequence using a universal forward primer for the 16S rRNA gene and a reverse primer specific for the integrated marker gene. | 1996 | 8930906 |
| 369 | 11 | 0.9747 | A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae. | 1988 | 2853096 |
| 452 | 12 | 0.9747 | A distinctive class of integron in the Vibrio cholerae genome. The ability of bacteria to acquire and disseminate heterologous genes has been a major factor in the development of multiple drug resistance. A gene, intI4, was identified that encodes a previously unknown integrase that is associated with a "gene-VCR" organization (VCRs are Vibrio cholerae repeated sequences), similar to that of the well-characterized antibiotic resistance integrons. The similarity was confirmed by IntI1-mediated recombination of a gene-VCR cassette into a class 1 integron. VCR cassettes are found in a number of Vibrio species including a strain of V. metschnikovii isolated in 1888, suggesting that this mechanism of heterologous gene acquisition predated the antibiotic era. | 1998 | 9554855 |
| 6127 | 13 | 0.9746 | Paenibacillus associated with milky disease in Central and South American scarabs. Thirty-one isolates of bacteria causing milky disease in scarab larvae collected in Central and South America were identified as Paenibacillus popilliae or Paenibacillus lentimorbus by use of DNA similarity analysis. The isolates were more similar to each other than to the North American isolates that are the type strains of the species. All of the bacteria of both species produced parasporal bodies, a characteristic previously believed to be unique to P. popilliae. Screening of the bacteria using PCR with parasporal protein primers revealed differences among the parasporal protein genes of P. popilliae isolates and between the parasporal genes of P. popilliae and P. lentimorbus. In contrast to P. popilliae from North America, none of the isolates from Central and South America was resistant to vancomycin, an indication of an interesting geographic distribution of the resistance genes. | 2000 | 11023744 |
| 357 | 14 | 0.9745 | New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. In this report we describe two distinct approaches to develop new antibiotic resistance cassettes that allow for efficient selection of Borrelia burgdorferi transformants. The first approach utilizes fusions of borrelial flagellar promoters to antibiotic resistance markers from other bacteria. The AACC1 gene, which encodes a gentamicin acetyltransferase, conferred a high level of gentamicin resistance in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred between this cassette and the kanamycin resistance cassette, which was previously developed in an analogous fashion. A second and different approach was taken to develop an efficient selectable marker that confers resistance to the antibiotic coumermycin A1. A synthetic gene was designed from the GYRB301 allele of the coumermycin-resistant B. Burgdorferi strain B31-NGR by altering the coding sequence at the wobble position. The resulting gene, GYRB(SYN), encodes a protein identical to the product of GYRB301, but the genes share only 66% nucleotide identity. The nucleotide sequence of GYRB(SYN)is sufficiently divergent from the endogenous B. Burgdorferi GYRB gene to prevent recombination between them. The cassettes described in this paper improve our repertoire of genetic tools in B. Burgdorferi. These studies also provide insight into parameters governing recombination and gene expression in B. Burgdorferi. | 2003 | 14593251 |
| 399 | 15 | 0.9745 | Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. The majority of bacteria elude culture in the laboratory. A metagenomic approach provides culture-independent access to the gene pool of the whole bacterial community. A metagenomic library was constructed from an industrial effluent treatment plant sludge containing about 1.25 Gb of microbial community DNA. Two arsenic-resistant clones were selected from the metagenomic library. Clones MT3 and MT6 had eight- and 18-fold higher resistance to sodium arsenate in comparison with the parent strain, respectively. The clones also showed increased resistance to arsenite but not to antimony. Sequence analysis of the clones revealed genes encoding for putative arsenate reductases and arsenite efflux pumps. A novel arsenate resistance gene (arsN) encoding a protein with similarity to acetyltransferases was identified from clone MT6. ArsN homologues were found to be closely associated with arsenic resistance genes in many bacterial genomes. ArsN homologues were found fused to putative arsenate reductases in Methylibium petroleiphilum PM1 and Anaeromyxobacter dehalogenans 2CP-C and with a putative arsenite chaperone in Burkholderia vietnamiensis G4. ArsN alone resulted in an approximately sixfold higher resistance to sodium arsenate in wild-type Escherichia coli W3110. | 2009 | 19016868 |
| 532 | 16 | 0.9745 | Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain. | 1999 | 10514571 |
| 488 | 17 | 0.9744 | Synthetic oligonucleotide probes for detection of mercury-resistance genes in environmental freshwater microbial communities in response to pollutants. Mercury-resistance genes were detected byin situ hybridization using new synthetic oligonucleotide probes specific formerA andmerB genes according to the published sequences of the corresponding enzymes. These DNA probes were used for the detection of specific mercury-resistant microorganisms isolated from the Rhine River which had been polluted 3 years previously in 1986. Mercuric reductase and organomercurial lyase genes persist in the bacterial genome even after the disappearance of the pollutant but are absent in axenic amoebae. A total of 49 bacterial isolates showed DNA homologies with the(32)P-labelled DNA probes and 15 free-living amoebae were selected due to their harboured symbiotic mercury-resistant bacteria. | 1992 | 24425330 |
| 9980 | 18 | 0.9744 | A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate. | 1998 | 9776589 |
| 109 | 19 | 0.9744 | Identification of two putative ATP-cassette genes in Encephalitozoon intestinalis. Currently existing chemotherapeutic compounds are limited and few are effective for treating microsporidiosis. It is possible that resistance of Encephalitozoon to some drugs occurs by efflux mechanisms similar to those previously described for mammalian tumour cells, bacteria or protozoal parasites such as Plasmodium, Leishmania and Entamoeba histolytica. The data in the present study suggest that Encephalitozoon intestinalis contains at least one multidrug resistance gene. We report here two complete sequences EiABC1 and EiABC2, encoding different ATP-binding cassette genes from E. intestinalis, including a P-gp. | 2001 | 11730796 |