# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 814 | 0 | 0.9595 | Drown Them in Their Own Garbage: a New Strategy To Reverse Polymyxin Resistance? Purcell and colleagues offer new insights into a major mechanism of polymyxin resistance in Gram-negative bacteria (A. B. Purcell, B. J. Voss, and M. S. Trent, J Bacteriol 204:e00498-21, 2022, https://doi.org/10.1128/JB.00498-21). Inactivating a single lipid recycling enzyme causes accumulation of waste lipid by-products that inhibit a key factor responsible for polymyxin resistance. | 2022 | 34843378 |
| 801 | 1 | 0.9591 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |
| 6159 | 2 | 0.9587 | Gene expression profiling of Cecropin B-resistant Haemophilus parasuis. Synthetically designed antimicrobial peptides (AMPs) present the potential of replacing antibiotics in the treatment of bacterial infections. However, microbial resistance to AMPs has been reported and little is known regarding the underlying mechanism of such resistance. The naturally occurring AMP cecropin B (CB) disrupts the anionic cell membranes of Gram-negative bacteria. In this study, CB resistance (CBR) was induced in Haemophilusparasuis SH0165 by exposing it to a series of CB concentrations. The CB-resistant H.parasuis strains CBR30 and CBR30-50 were obtained. The growth curves of SH0165 and CBR30 showed that CBR30 displayed lower growth rates than SH0165. The result of transmission electron microscopy showed cell membranes of the CB-resistant CBR30 and CBR30-50 were smoother than SH0165. Microarrays detected 257 upregulated and 254 downregulated genes covering 20 clusters of orthologous groups (COGs) of the CB-resistant CBR30 compared with SH0165 (>1.5-fold change, p < 0.05). Sixty genes were affected in CBR30-50 covering 18 COGs, with 28 upregulated and 32 downregulated genes. Under the COG function classification, the majority of affected genes in the CB-resistant CBR30 and CBR30-50 belong to the category of inorganic ion transport, amino acid transport, and metabolism. The microarray results were validated by real-time quantitative reverse transcription PCR. This study may provide useful guidance for understanding the molecular mechanism underlying H.parasuis resistance to CB. | 2014 | 24862339 |
| 7881 | 3 | 0.9585 | Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level. | 2019 | 30640017 |
| 7915 | 4 | 0.9585 | Deciphering antibiotic resistance genes and microbial community of anammox consortia under sulfadiazine and chlortetracycline stress. The responses of anammox consortia to typical antibiotics sulfadiazine (SDZ) and chlortetracycline (CTC) were evaluated on the aspects of general performance, microbial activity, diversity and abundance of antibiotic resistance genes (ARGs), and microbial host of ARGs in anammox system. Results showed the anammox consortia had a stable performance and great resistance to 10 mg/L of SDZ, while 1 mg/L of CTC induced an unrecoverable inhibitory influence on nitrogen removal performance and anammox activity without any special treatment. The absolute abundances of anammox functional genes (nirS, hzsA and hdh) were stimulated by the acclimation to SDZ stress, however, they were much lower than the initial levels under CTC stress. In anammox consortia, ARGs comprised 18 types (94 subtypes) derived from over 20 genera. Strikingly, the anammox bacteria (AnAOB) "Ca. Brocadia" occupied 46.81% of the SDZ resistance genes (sul1 and sul2) and 38.63% of CTC resistance genes (tetX, tetG and rpsJ), and thus were identified as the dominant antibiotic resistance bacteria (ARB). Therefore, harboring the corresponding ARGs by AnAOB could be the primary protective mechanism to interpret the resistance of anammox consortia to antibiotics stress. Meanwhile, co-occurring of ARGs in anammox consortia suggested the synergistic cooperation of different ARGs could be an essential strategy to alleviate the SDZ and CTC stress. The present study proposed a new interpretation of possible mechanism that cause antibiotic resistance of anammox consortia. | 2022 | 35259594 |
| 7876 | 5 | 0.9585 | Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS. | 2023 | 36871701 |
| 8822 | 6 | 0.9583 | Proteomics Analysis Reveals Bacterial Antibiotics Resistance Mechanism Mediated by ahslyA Against Enoxacin in Aeromonas hydrophila. Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655, narQ, AHA_3721, AHA_2114, and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria. | 2021 | 34168639 |
| 515 | 7 | 0.9582 | The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:73167321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria. | 1998 | 9573189 |
| 8827 | 8 | 0.9582 | Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria and Metabolites Remediates Insulin Resistance in iNOS Knockout Mice. The role of oxidative and nitrosative stress has been implied in both physiology and pathophysiology of metabolic disorders. Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in the absence of iNOS. Insulin-resistant and dyslipidemic iNOS(-/-) mice displayed reduced microbial diversity, with a higher relative abundance of Allobaculum and Bifidobacterium, gram-positive bacteria, and altered serum metabolites along with metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic anomalies in iNOS(-/-) mice. Such improvements in metabolic markers were accompanied by alterations in the expression of genes involved in fatty acid synthesis in the liver and adipose tissue, lipid uptake in adipose tissue, and lipid efflux in the liver and intestine tissue. The rescue of IR in vancomycin-treated iNOS(-/-) mice was accompanied with the changes in select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio. In the present study, we demonstrate that vancomycin-mediated depletion of gram-positive bacteria in iNOS(-/-) mice reversed the metabolic perturbations, dyslipidemia, and insulin resistance. | 2021 | 35127558 |
| 8485 | 9 | 0.9580 | Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF. | 2023 | 36958653 |
| 7880 | 10 | 0.9579 | The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation. | 2023 | 36174754 |
| 6158 | 11 | 0.9579 | Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance. | 2012 | 22247513 |
| 7883 | 12 | 0.9579 | Anammox biofilm system under the stress of Hg(II): Nitrogen removal performance, microbial community dynamic and resistance genes expression. The existence of heavy metals in wastewater has obtained more attention due to its high toxicity and non-degradability. In this study, we investigated the changes of anaerobic ammonium oxidation (Anammox) system under long-term invasion of Hg(Ⅱ). The results indicated that the total nitrogen removal efficiency (TNRE) dropped to around 55 % as Hg(Ⅱ) concentration went up to 20 mg L(-1). But the functional bacteria rapidly developed some resistant abilities and maintained a stable TNRE of 65 % till the end of test. The maximum relative expression fold change of merA, merB, merD and merR were 468.8476, 23.7383, 5.0321 and 15.2514 times, respectively. The high positive correlation between the expression abundance of metal resistance genes and the concentrations of Hg(Ⅱ) revealed the resistant mechanisms of microorganisms to heavy metals. Moreover, the protective strategy based on extracellular polymeric substances also contributed to the stability of Anammox system. | 2020 | 32315795 |
| 7885 | 13 | 0.9577 | Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress. The increasing use of engineered nanoparticles (NPs) poses an emerging challenge to biological wastewater treatment. The long-term impact of CuNPs on anaerobic ammonium oxidation (anammox) process was firstly investigated in this study. The nitrogen removal capacity of anammox reactor was nearly deprived within 30days under the stress of 5.0mgL(-1) CuNPs and the relative abundance of anammox bacteria (Ca. Kuenenia) was decreased from 29.59% to 17.53%. Meanwhile, copper resistance genes associated with the Cus, Cop and Pco systems were enriched to eliminate excess intracellular copper. After the withdrawal of CuNPs from the influent, the nitrogen removal capacity of anammox biomass recovered completely within 70days. Overall, anammox biomass showed susceptibility, resistance and resilience to the stress of CuNPs. Therefore, the potential impacts of ENPs on anammox-based processes should be of great concern. | 2017 | 28550773 |
| 8113 | 14 | 0.9577 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 8735 | 15 | 0.9577 | The Effect of Ice-Nucleation-Active Bacteria on Metabolic Regulation in Evergestis extimalis (Scopoli) (Lepidoptera: Pyralidae) Overwintering Larvae on the Qinghai-Tibet Plateau. Evergestis extimalis (Scopoli) is a significant pest of spring oilseed rape in the Qinghai-Tibet Plateau. It has developed resistance to many commonly used insecticides. Therefore, biopesticides should be used to replace the chemical pesticides in pest control. In this study, the effects of ice-nucleation-active (INA) microbes (Pseudomonas syringae 1.7277, P. syringae 1.3200, and Erwinia pyrifoliae 1.3333) on E. extimalis were evaluated. The supercooling points (SCP) were markedly increased due to the INA bacteria application when they were compared to those of the untreated samples. Specifically, the SCP of E. extimalis after its exposure to a high concentration of INA bacteria in February were -10.72 °C, -13.73 °C, and -14.04 °C. Our findings have demonstrated that the trehalase (Tre) genes were up-regulated by the application of the INA bacteria, thereby resulting in an increased trehalase activity. Overall, the INA bacteria could act as effective heterogeneous ice nuclei which could lower the hardiness of E. extimalis to the cold and then freeze them to death in an extremely cold winter. Therefore, the control of insect pests with INA bacteria goes without doubt, in theory. | 2022 | 36292857 |
| 526 | 16 | 0.9576 | Role of rhomboid proteases in bacteria. The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases. | 2013 | 23518036 |
| 7886 | 17 | 0.9576 | Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance. | 2020 | 32244076 |
| 8807 | 18 | 0.9576 | Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance. | 2021 | 34534653 |
| 7875 | 19 | 0.9575 | Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment. | 2024 | 39566627 |