RPKM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
524300.9607Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The bla(CTX-M), bla(KPC), and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community.202337433210
524210.9582Highly sensitive detection of antimicrobial resistance genes in hospital wastewater using the multiplex hybrid capture target enrichment. Wastewater can be useful in monitoring the spread of antimicrobial resistance (AMR) within a hospital. The abundance of antibiotic resistance genes (ARGs) in hospital effluent was assessed using metagenomic sequencing (mDNA-seq) and hybrid capture (xHYB). mDNA-seq analysis and subsequent xHYB targeted enrichment were conducted on two effluent samples per month from November 2018 to May 2021. Reads per kilobase per million (RPKM) values were calculated for all 1,272 ARGs in the constructed database. The monthly numbers of patients with presumed extended-spectrum β-lactamase (ESBL)-producing and metallo-β-lactamase (MBL)-producing bacteria, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) were compared with the monthly RPKM values of bla(CTX-M), bla(IMP), mecA, vanA, and vanB by xHYB. The average RPKM value for all ARGs detected by xHYB was significantly higher than that of mDNA-seq (665, 225, and 328, respectively, and P < 0.05). The average number of patients with ESBL producers and RPKM values of bla(CTX-M-1) genes in 2020 were significantly higher than that in 2019 (17 and 13 patients per month and 921 vs 232 per month, respectively, both P < 0.05). The average numbers of patients with MBL-producers, MRSA, and VRE were 1, 28, and 0 per month, respectively, while the average RPKM values of bla(IMP), mecA, vanA, and vanB were 6,163, 6, 0, and 126 per month, respectively. Monitoring ARGs in hospital effluent using xHYB was found to be more useful than conventional mDNA-seq in detecting ARGs including bla(CTX-M), bla(IMP,) and vanB, which are important for infection control.IMPORTANCEEnvironmental ARGs play a crucial role in the emergence and spread of AMR that constitutes a significant global health threat. One major source of ARGs is effluent from healthcare facilities, where patients are frequently administered antimicrobials. Culture-independent methods, including metagenomics, can detect environmental ARGs carried by non-culturable bacteria and extracellular ARGs. mDNA-seq is one of the most comprehensive methods for environmental ARG surveillance; however, its sensitivity is insufficient for wastewater surveillance. This study demonstrates that xHYB appropriately monitors ARGs in hospital effluent for sensitive identification of nosocomial AMR dissemination. Correlations were observed between the numbers of inpatients with antibiotic-resistant bacteria and the ARG RPKM values in hospital effluent over time. ARG surveillance in hospital effluent using the highly sensitive and specific xHYB method could improve our understanding of the emergence and spread of AMR within a hospital.202337222510
810520.9577Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.202539798649
810930.9569The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.202235063626
774640.9568Phosphate-modified calamus-based biochar filler enhanced constructed wetland mitigating antibiotic resistance risks: insight from metagenomics. In this study, an innovative phosphate-modified calamus-biochar (PBC) filler with high antibiotic adsorption capacity was developed to enhance constructed wetlands (CWs) wastewater treatment. Results showed that the erythromycin (ERY) and sulfamethoxazole (SMX) removal efficiency of PBC-CW was 86.5 % and 84.0 %, which was 2-fold higher than those of the blank group. Metagenomic analysis found that the ERY and SMX would significantly promote the increase in abundance of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and virulence factor genes (VFGs). Compared to blank group, the abundances of ARGs, MGEs and VFGs were reduced by 67.2 %, 33.3 % and 11.1 % in PBC-CW. Among them, the abundance of sulfonamide and MLS, which were key genes to resistance to SMX and ERY, respectively, were reduced by 71.8 % and 63.1 % in PBC-CW. Moreover, these persistent ARG subtypes, detected simultaneously in all the samples, reduced the total abundance by 44.8 %. In addition, microbial community analysis found that the sum abundance of Arenimonas, Chryseobacterium and Hydrogenophaga, which were suggested as potential antibiotic-resistant bacteria (ARB) via correlation analysis, were significantly decreased from 1.54 % in blank group to 0.23 % in PBC group. Moreover, Chryseobacterium and Hydrogenophaga were positively correlated with VFGs, they could be pathogens with resistance genes. Therefore, PBC-CW could effectively reduce the abundance of ARGs and pathogenic microorganisms, thereby improving water security.202540845656
524050.9562Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.202438332161
716460.9561Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators.202540858019
810870.9558Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting.202134534940
775580.9557Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river.201931726563
775690.9554Mitigation of antibiotic resistance: the efficiency of a hybrid subsurface flow constructed wetland in the removal of resistant bacteria in wastewater. This research investigates the effectiveness of a lab-scale hybrid subsurface flow constructed wetland (HSSFCW) for removing wastewater contaminants, including antibiotic-resistant bacteria (ARB), genes (ARGs) and antibiotics. The results suggested that HSSFCW demonstrated a high removal efficiency for COD (89%) and BOD (88.9%), while lower efficiencies were observed for salts, TDS, EC, and TKN. Further, various bacteria such as Enterobacter cloacae, Serratia liquefaciens and Serratia odorifera were detected in the plant rhizosphere, while Acinetobacter baumanii and Staphylococcus spp. were identified as biofilm formers on the wetland media. The mean removal efficiency of 70.44, 65.99, 70.66 and 51.49% was observed for total heterotrophic bacteria; Cefixime (Cef)-, Ciprofloxacin (Cip)-, and Linezolid (Lzd)-resistant bacteria. Upon chlorination of effluent samples, Cef-, Cip- and Lzd-resistant bacteria were effectively inactivated at 30, 15 and 7.5 mg Cl(2) min/L, respectively. The wetland achieved a removal efficiency of 83.85% for Cip and 100% for Lzd at week 12 with p = 0.040 and p < 0.001, respectively. Further, a log reduction of 0.66 for 16S, 0.82 for blaTEM, 0.61 for blaCTX, and 0.48 for blaOXA was observed. Thus, HSSFCW was observed to be efficient in removing organic contaminants, ARBs, ARGs and antibiotics from domestic wastewater and can be upgraded under natural environments.202540536145
7770100.9553Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m(3)/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, bla(NDM-1), and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, bla(NDM-1), and qnrA) and intI1 were identified (R(2) of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source.202031864053
8001110.9551Exploring resistomes and microbiomes in pilot-scale microalgae-bacteria wastewater treatment systems for use in low-resource settings. Antibiotic resistance genes (ARGs) released into the environment are an emerging human and environmental health concern, including ARGs spread in wastewater treatment effluents. In low-to-middle income countries (LMICs), an alternate wastewater treatment option instead of conventional systems are low-energy, high-rate algal ponds (HRAP) that use microalgae-bacteria aggregates (MABA) for waste degradation. Here we studied the robustness of ARG removal in MABA-based pilot-scale outdoor systems for 140 days of continuous operation. The HRAP system successfully removed 73 to 88 % chemical oxygen demand and up to 97.4 % ammonia, with aggregate size increasing over operating time. Fourteen ARG classes were identified in the HRAP influent, MABA, and effluent using metagenomics, with the HRAP process reducing total ARG abundances by up to 5-fold from influent to effluent. Parallel qPCR analyses showed the HRAP system significantly reduced exemplar ARGs (p < 0.05), with 1.2 to 4.9, 2.7 to 6.3, 0 to 1.5, and 1.2 to 4.8 log-removals for sul1, tetQ, bla(KPC), and intl1 genes, respectively. Sequencing of influent, effluent and MABAs samples showed associated microbial communities differed significantly, with influent communities by Enterobacteriales (clinically relevant ARGs carrying bacteria), which were less evident in MABA and effluent. In this sense, such bacteria might be excluded from MABA due to their good settling properties and the presence of antimicrobial peptides. Microalgae-bacteria treatment systems steadily reduced ARGs from wastewater during operation time, using sunlight as the energetic driver, making them ideal for use in LMIC wastewater treatment applications.202337080313
7769120.9550Occurrence of super antibiotic resistance genes in the downstream of the Yangtze River in China: Prevalence and antibiotic resistance profiles. The super antibiotic resistance genes (SARGs) demonstrate more severe threats than other antibiotic resistance genes while have not received enough attention in the environment. The study explored the prevalence and the antibiotic tolerance profiles of two typical SARGs, MCR-1 and NDM-1, and their hosting bacteria in the downstream of the Yangtze River and the nearby wastewater treatment plant (WWTP) and drinking water treatment plant (DWTP). Results indicated that MCR-1 and NDM-1 were prevalent in the influent and biological units of the WWTP. Their hosting bacteria were effectively removed, but 2.49 × 10(8) copies/L MCR-1 and 7.00 × 10(6) copies/L NDM-1 were still persistent in the effluent. In the Yangtze River, MCR-1 and NDM-1 were detected with higher abundance and antibiotic tolerance than the WWTP effluent and were significantly affected by nearby water contamination and human activities. In the DWTP, MCR-1 and NDM-1 were detected with average values 5.56 × 10(7) copies/L and 2.14 × 10(5) copies/L in the influent. Their hosting bacteria were undetectable in the effluent, but the two SARGs were still persistent with 1.39 × 10(7) copies/L and 6.29 × 10(4) copies/L, and were greatly enriched in the sludge. Molecular ecological networks demonstrated wide hosting relationships between MCR-1/NDM-1 and bacteria community in the DWTP. Redundancy analysis found that MCR-1 positively correlated with COD and NH(3)-N, while negatively correlated with turbidity. Additionally, MCR-1 hosting bacteria positively correlated with NO(3)(-)-N and negatively correlated with COD and NH(3)-N. NDM-1 positively correlated with turbidity and NDM-1 hosting bacteria positively correlated with COD and NO(2)(-)-N. The study demonstrated that the WWTP could not effectively remove SARGs with high amount of them being discharged into the Yangtze River. Then they were transported into the DWTP and the persistent SARGs in the effluent would probably be transferred into human, thus imposing great threats on public health.201930321718
7167130.9549Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.202438782270
8107140.9547Effects of micron-scale zero valent iron on behaviors of antibiotic resistance genes and pathogens in thermophilic anaerobic digestion of waste activated sludge. This work investigated the metagenomics-based behavior and risk of antibiotic resistance genes (ARGs), and their potential hosts during thermophilic anaerobic digestion (TAD) of waste activated sludge, enhanced by micron-scale zero valent iron (mZVI). Tests were conducted with 0, 25, 100, and 250 mg mZVI/g total solids (TS). Results showed that up to 7.3% and 4.8% decrease in ARGs' abundance and diversity, respectively, were achieved with 100 mg mZVI/g TS. At these conditions, ARGs with health risk in abundance and human pathogenic bacteria (HPB) diversity were also decreased by 8.3% and 3.6%, respectively. Additionally, mZVI reduced abundance of 72 potential pathogenic supercarriers for ARGs with high health risk by 2.5%, 5.0%, and 6.1%, as its dosage increased. Overall, mZVI, especially at 100 mg/g TS, can mitigate antibiotic resistance risk in TAD. These findings are important for better understanding risks of ARGs and their pathogenic hosts in ZVI-enhanced TAD of solid wastes.202336931448
7267150.9547Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. BACKGROUND: Municipal wastewater treatment plants (WWTPs) are pivotal reservoirs for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Selective pressures from antibiotic residues, co-selection by heavy metals, and conducive environments sustain ARGs, fostering the emergence of ARB. While advancements in WWTP technology have enhanced the removal of inorganic and organic pollutants, assessing ARG and ARB content in treated water remains a gap. This metagenomic study meticulously examines the filtration efficiency of two distinct WWTPs-conventional (WWTPC) and advanced (WWTPA), operating on the same influent characteristics and located at Aligarh, India. RESULTS: The dominance of Proteobacteria or Pseudomonadota, characterized the samples from both WWTPs and carried most ARGs. Acinetobacter johnsonii, a prevailing species, exhibited a diminishing trend with wastewater treatment, yet its persistence and association with antibiotic resistance underscore its adaptive resilience. The total ARG count was reduced in effluents, from 58 ARGs, representing 14 distinct classes of antibiotics in the influent to 46 and 21 in the effluents of WWTPC and WWTPA respectively. However, an overall surge in abundance, particularly influenced by genes such as qacL, bla(OXA-900), and rsmA was observed. Numerous clinically significant ARGs, including those against aminoglycosides (AAC(6')-Ib9, APH(3'')-Ib, APH(6)-Id), macrolides (EreD, mphE, mphF, mphG, mphN, msrE), lincosamide (lnuG), sulfonamides (sul1, sul2), and beta-lactamases (bla(NDM-1)), persisted across both conventional and advanced treatment processes. The prevalence of mobile genetic elements and virulence factors in the effluents possess a high risk for ARG dissemination. CONCLUSIONS: Advanced technologies are essential for effective ARG and ARB removal. A multidisciplinary approach focused on investigating the intricate association between ARGs, microbiome dynamics, MGEs, and VFs is required to identify robust indicators for filtration efficacy, contributing to optimized WWTP operations and combating ARG proliferation across sectors.202540050994
7773160.9547Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07).201222369865
7780170.9546Antibiotic Resistance Genes in drinking water of China: Occurrence, distribution and influencing factors. Drinking water samples were collected from 71 cities, including 28 provincial capital cities or municipalities, 20 prefecture cities and 23 counties, of 31 provincial-level administrative regions in China from July to August in 2017. Futhermore, 24 Antibiotic Resistance Genes (ARGs), 16S rRNA and 2 integrase genes were quantified by qPCR to investigate the pollution degree of ARGs. The results revealed that the 16S ranged from 10(5) - 10(8) copies/100 mL in the drinking water, and its treatment process could effectively remove bacteria. Moreover, sulfonamides-ARGs were the most prevalent ARGs in the drinking water of China, and the abundance of bla(TEM) ranked top five in all cities among the selected ARGs, indicating that the pollution condition of the genes should be aroused more attention. The data of qPCR and correlation analyses indicated that intI1 played a more crucial role than intI2 in the propagation of ARGs in the drinking water. Additionally, the pollution degree of ARGs among different city types showed no significant difference.202031683044
7160180.9545High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
3482190.9545Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.201829751438