# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6790 | 0 | 0.9951 | Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective. | 2025 | 39488061 |
| 8111 | 1 | 0.9950 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 6793 | 2 | 0.9945 | Interplays between cyanobacterial blooms and antibiotic resistance genes. Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs. | 2023 | 37897871 |
| 6937 | 3 | 0.9945 | Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems. | 2025 | 40712359 |
| 8123 | 4 | 0.9942 | The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil. | 2024 | 37907163 |
| 6821 | 5 | 0.9942 | Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health. | 2025 | 40043931 |
| 8581 | 6 | 0.9941 | Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment. | 2024 | 38147751 |
| 6938 | 7 | 0.9941 | Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides. | 2025 | 41175058 |
| 8580 | 8 | 0.9941 | Mitigation of microplastic-associated emerging pollutants by chlorination using field-collected microplastic: Antimicrobial-resistant genes and pathogens. The ubiquity of microplastics (MPs) in aquatic environments has raised significant concerns regarding their roles as vectors for antibiotic-resistance genes (ARGs) and antibiotic-resistant pathogens (ARPs). This study investigated the mitigation of ARGs and ARPs associated with field-collected MPs through chlorination using free available chlorine (FAC) at varying concentrations. FAC effectively reduced the absolute abundance of ARGs on MPs by up to 99.69 %, although the relative abundance of certain ARGs persisted or increased after treatments. Results revealed that the three-dimensional structure of biofilms on MPs significantly influenced FAC efficacy, with interior biofilm bacteria demonstrating greater resistance than outer biofilm. Additionally, FAC induced fragmentation of MPs, particularly increasing the proportion of particles smaller than 100 μm. Notably, ARGs such as sul1 and ermB showed substantial reductions in absolute abundance, whereas ermC and sul2 exhibited less reduction, highlighting the complexity of disinfection in MP-associated biofilms. These findings underscore the need for optimizing disinfection strategies to mitigate ARG dissemination and address environmental risks posed by MPs in wastewater effluents. | 2025 | 40436100 |
| 7006 | 9 | 0.9939 | Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes. | 2023 | 37409977 |
| 6939 | 10 | 0.9939 | Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems. | 2023 | 37007487 |
| 6926 | 11 | 0.9939 | Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application. | 2023 | 37247491 |
| 7052 | 12 | 0.9938 | Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria. | 2021 | 33454495 |
| 7005 | 13 | 0.9938 | The mobility, host, and co-occurrence of antibiotic resistance genes in multi-type pig manure-soil systems: Metagenome assembly analysis. Antibiotic resistance genes (ARGs) pose significant threats to public health and environmental safety, yet the mobility and hosts of ARGs in animal manure-soil systems remain poorly understood. Here, we evaluated the environmental risks of tilmicosin (TIL) and investigated ARG profiles, mobility, and drivers in pig manure-soil systems using metagenomic assembly. TIL was effectively degraded during aerobic composting and fertilization via hydroxylation, demethylation, and deglycosylation. Notably, the total abundance of ARGs significantly decreased during aerobic composting and fertilization, and manure types affected the distribution and composition of ARGs in fertilized soils. There was a special correlation between the genetic location and type of ARGs. In addition, the results showed co-localization of some specific ARGs and mobile genetic elements (MGEs) (tetA-tetR- transposase; tetR-floR- Tn3 family). A significant correlation was found between Escherichia coli and multiple ARG types, especially multidrug ARGs. Microbial community was the dominant factor driving the variations of ARGs in pig manure-soil systems, followed by MGEs, environmental factors, and antibiotic concentration. This study advances the understanding on the environmental risk assessment of TIL and elucidates the key drivers of ARG dissemination in pig manure-soil systems, providing critical insights and actionable strategies for sustainable livestock management and environmental risk control. | 2025 | 40865323 |
| 8120 | 14 | 0.9938 | Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product. | 2020 | 32310121 |
| 7168 | 15 | 0.9937 | Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils. | 2022 | 35728317 |
| 6820 | 16 | 0.9937 | Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water. | 2025 | 39874760 |
| 7930 | 17 | 0.9937 | Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats. | 2023 | 37898001 |
| 6917 | 18 | 0.9937 | Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use. | 2023 | 36657587 |
| 6936 | 19 | 0.9937 | Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems. | 2025 | 40412325 |