RINGED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
299100.8787Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals.202337317052
134610.8634High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health.202133294974
122220.8621Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide.202236406904
134530.8613Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BACKGROUND: Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION: Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group.201931445510
82840.8607Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.202337623959
126550.8606Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance.201525475289
122360.8605Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.201425052999
130370.8604Isolation and Characterization of Antimicrobial-Resistant Escherichia coli from Retail Meats from Roadside Butcheries in Uganda. Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistant Escherichia coli from retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolate E. coli. We successfully isolated E. coli from 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates with tetA and/or tetB gene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes with bla(TEM) (15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes with sul2 (15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistant E. coli can easily be transferred from farms to tables from retail meats obtained from roadside butcheries.202032551973
133880.8603Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila.202438551906
126490.8603Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.201526413075
1301100.8602Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat.202032440171
1324110.8602Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes.201020624632
1318120.8602Assessing the Public Health Implications of Virulent and Antibiotic-Resistant Bacteria in Côte d'Ivoire's Ready-to-Eat Salads. In Côte d'Ivoire, the popularity of ready-to-eat salads has grown substantially. Despite their convenience, these products often face criticism for their microbiological safety. This research was conducted to assess the virulence and antibiotic resistance profiles of Escherichia coli (E. coli), Salmonella spp., and Staphylococcus aureus (S. aureus) isolated from salads available in hypermarkets across Abidjan. The study utilized a combination of microbiological and molecular biology techniques. Results indicated that E. coli isolates harbored virulence genes such as stx2 (50%) and ST (62.50%), though genes stx1 and LT were absent in the samples tested. In S. aureus, virulence genes detected included sea (55.55%), sec (11.110%), and sed (44.44%). The antibiotic resistance assessment revealed high resistance in E. coli to β-lactam antibiotics, with all isolates resistant to cefuroxime (100%) and the majority to ampicillin and cefoxitin (87.5%). Most Salmonella spp. isolates were sensitive to the antibiotics tested, except for cefoxitin and ampicillin, showing resistance rates of 42.85% and 57.15%, respectively. Staphylococcus aureus demonstrated considerable resistance, particularly to cefoxitin (44.44%), benzylpenicillin (100%), and ampicillin (55.55%). In addition, resistance to aminoglycosides (55.55% to both kanamycin and gentamicin) and macrolides (66.66% to erythromycin and 55.55% to clindamycin) was noted. Resistance to various fluoroquinolones ranged between 33.33% and 55.55%. The presence of resistance genes such as blaTEM (10.52%), qnrA (2.26%), qnrB (5.26%), qnrS (5.26%), and mecA (13.15%) in E. coli and S. aureus underscores the challenge of multidrug resistance, exhibiting phenotypes such as ESBL (50%), Meti-R (55.55%), KTG (44.44%), MLSB (44.44%), and FQ-R (25%). These results carry significant epidemiological and public health implications, highlighting the urgent need for improved safety regulations and practices regarding ready-to-eat salads in urban food markets.202439139471
2993130.8602Antibiotic resistant zoonotic bacteria in Irrawaddy squirrel (Callosciurus pygerythrus). Irrawaddy squirrel (Callosciurus pygerythrus) may play an important role in the transmission of zoonotic bacteria, but little is known about the carriage of zoonotic bacteria in this common frugivorous rodent in Bangladesh. We aimed to investigate the presence of common zoonotic bacterial pathogens in Irrawaddy squirrel in the southeast part of Bangladesh. A total of 27 rectal and 27 oro-nasal swabs were collected from 27 healthy wild Irrawaddy squirrels. Four common zoonotic bacteria were isolated following routine laboratory procedures, and were identified based on colony morphology, and biochemical and staining properties. The pathogenic potential of the identified bacteria was confirmed by detection of virulence genes by PCR. All isolates were subjected to antimicrobial susceptibility test against seven antibiotics from six generic groups which are commonly used in human and veterinary medicine in Bangladesh. The prevalence of Escherichia coli, Salmonella spp., Yersinia spp. and Staphylococcus spp. was 44.4% (95% CI, 32.0-57.6), 13% (95% CI, 6.1-24.7), 44.4% (95% CI, 32.0-57.6), and 72.2% (95% CI, 59.0-82.5), respectively. We identified potential zoonotic virulence genes in all of these four bacterial species. Antimicrobial susceptibility testing revealed the presence of several multidrug resistant bacterial strains in squirrels. To the best of our knowledge, this is the first report in Bangladesh of the detection of antibiotic resistant zoonotic bacteria in Irrawaddy squirrels. The findings underpin the role of Irrawaddy squirrel as a source of pathogenic antibiotic resistant bacteria, consequently, fruit rejected because of squirrel consumption and squirrel-bites deserve more concern than previously.201930488592
1302140.8602A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. METHODS: According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. RESULTS: A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. CONCLUSION: Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods.202134635183
1347150.8601Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant(9) for aminoglycosides, mdtK, gyrA, gyrB, parC, parE for quinolones and cat1, cat4 for phenicols. Phylogenetic analysis based on accessory genes clustered S. Legon strains separately from the S. Muenster strains. These strains were from different markets suggesting local circulation of related strains. Our study justifies consumer resistance to consumption of unripened soft cheese without further lethal heat treatment, and provides evidence that supports the Ghana Health Service recommendation for use of 3rd generation cephalosporins for the treatment of MDR NTS infections.201829680695
1364160.8601Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria.200717536933
2647170.8599Antibiotic Susceptibility and Virulence Factors in Escherichia coli from Sympatric Wildlife of the Apuan Alps Regional Park (Tuscany, Italy). Today a growing number of studies are focusing on antibiotic resistance in wildlife. This is due to the potential role of wild animals as reservoirs and spreaders of pathogenic and resistant bacteria. This study focused on isolating and identifying Escherichia coli from the feces of wild animals living in the Apuan Alps Regional Park (Tuscany, Italy) and evaluating some of their antibiotic resistance and pathogenicity traits. Eighty-five fecal samples from different species were studied. Seventy-one E. coli were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry analysis, subjected to antibiograms and polymerase chain reaction for the detection of antibiotic resistance genes and pathogenicity factors. The highest resistance rates were found against cephalothin (39.4%) and ampicillin (33.8%), followed by amoxicillin/clavulanic acid (15.5%), streptomycin (12.7%), and tetracycline (5.6%). Regarding resistance genes, 39.4% of the isolates were negative for all tested genes. The remaining isolates were positive for bla(CMY)(-2), sul2, strA-strB and aadA1, tet(B), and tet(A), encoding resistance to beta-lactams, trimethoprim/sulfamethoxazole, streptomycin, and tetracycline, respectively. With regard to virulence factors, 63.4% of the isolates were negative for all genes; 21.1% carried astA alone, which is associated with different pathotypes, 9.9% carried both escV and eaeA (aEPEC); single isolates (1.4%) harbored escV (aEPEC), escV associated with astA and eaeA (aEPEC), astA with stx2 and hlyA (EHEC) or astA and stx1, stx2, and hlyA (EHEC). These results show that wildlife from nonanthropized environments can be a reservoir for antibiotic-resistant microorganisms and suggest the need for a deeper knowledge on their origin and diffusion mechanisms through different ecological niches.201930676273
1317180.8599Antibiotic resistance and virulence genes profile of Non typhodial Salmonella species isolated from poultry enteritis in India. Salmonella species (spp) is the most important gastrointestinal pathogen present ubiquitously. Non typhoidal Salmonella (NTS) is commonly associated with gastroenteritis in humans. Layer birds once get infection with NTS, can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria. It results in a high risk of potential exposure of eggs to the bacteria. The current study was conducted to determine the serotype diversity, presence of virulence genes, antibiotic resistance pattern, and genes of NTS from poultry enteritis. Out of 151 intestinal swabs from poultry total 118 NTS were isolated, which were characterized serologically as S. Typhimurium (51 strains), S. Weltevreden (57 strains) and untypable (10 strains). Most effective antibiotics were amikacin, gentamycin and ceftriaxone (33.05%) followed by ampicillin, azithromycin and ciprofloxacin (16.69%), co-trimoxazole (13.55%), and tetracycline (6.78%). Multidrug resistance recorded in 17.70% (N = 21/118) strains. Antimicrobial-resistant genes i.e. blaTEM, blaSHV, blaCTX-M, tet(A), tet(B), tet(C), sul1, sul2, sul3. blaTEM and tet(A) were present in 95% (20/21). Eleven virulence genes i.e. invA, hilA, sivH, tolC, agfA, lpfA, spaN, pagC, spiA, iroN and fliC 2 were present in all the 30 isolates. While, sopE was present in only 2 isolates, NTS strains with characteristics of pathogenicity and multidrug resistance from poultry enteritis were detected. Multidrug resistance showed the necessity of prudent use of antibiotics in the poultry industry.202438430331
1267190.8598Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. OBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE). RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain. DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria.201830077662