# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6787 | 0 | 0.9683 | Impact of chlorine disinfection on intracellular and extracellular antimicrobial resistance genes in wastewater treatment and water reclamation. Wastewater treatment plants and water reclamation facilities are reservoirs of antimicrobial resistance genes (ARGs). These ARGs are not limited solely to intracellular DNA (inARGs) but include extracellular DNA (exARGs) present in wastewater. The release of exARGs from cells can be exacerbated by treatment processes, including chlorine disinfection, which disrupts bacterial cells. Given the potential for exARGs to drive horizontal gene transfer and contribute to the proliferation of antimicrobial resistance, it is imperative to recognize these fractions as emerging environmental pollutants. In this study, we conducted a comprehensive year-long assessment of both inARGs and exARGs, further differentiating between dissolved exARGs (Dis_exARGs) and exARGs adsorbed onto particulate matter (Ads_exARGs), within a full-scale wastewater treatment and water reclamation facility. The results revealed that Ads_exARGs comprised up to 30 % of the total ARGs in raw sewage with high biomass content. Generally, treatments at low and high doses of chlorine increased the abundance of Dis_exARGs and Ads_exARGs. The fate of ARG levels that varied depending on the type of ARGs suggested variations in the susceptibility of the host bacteria to chlorination. Moreover, co-occurrence of several potential opportunistic pathogenic bacteria and ARGs were observed. Therefore, we propose higher doses of chlorination as a prerequisite for the effective removal of inARGs and exARGs. | 2024 | 39067603 |
| 6788 | 1 | 0.9680 | Release and Constancy of an Antibiotic Resistance Gene in Seawater under Grazing Stress by Ciliates and Heterotrophic Nanoflagellates. Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress. | 2017 | 28592722 |
| 3540 | 2 | 0.9680 | Microbial contents of vacuum cleaner bag dust and emitted bioaerosols and their implications for human exposure indoors. Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols. | 2013 | 23934489 |
| 6732 | 3 | 0.9676 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 6733 | 4 | 0.9676 | Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well. | 2018 | 30253298 |
| 6911 | 5 | 0.9676 | Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG. | 2024 | 38643583 |
| 8239 | 6 | 0.9674 | Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis. Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. IMPORTANCE: In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting that this survival mechanism is not unique to P. dendritiformis. | 2011 | 21628502 |
| 7350 | 7 | 0.9671 | The vertical distribution of tetA and intI1 in a deep lake is rather due to sedimentation than to resuspension. Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important. | 2020 | 31926010 |
| 6921 | 8 | 0.9669 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 7489 | 9 | 0.9669 | Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates. | 2021 | 34214892 |
| 8128 | 10 | 0.9668 | Recognize and assessment of key host humic-reducing microorganisms of antibiotic resistance genes in different biowastes composts. Humic-reducing microorganisms (HRMs) can utilize humic substance as terminal electron mediator promoting the bioremediation of contaminate, which is ubiquitous in composts. However, the impacts of HRMs on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in composts and different HRMs community composition following the types of biowastes effected the spread of ARGs have not been investigated. Herein, the dynamics and mobility of ARGs and HRMs during protein-, lignocellulose- and lignin-rich composting were investigated. Result show that ARGs change significantly at the thermophilic phase, and the relative abundance of most ARGs increase during composting. Seven groups of HRMs communities are classified as primary host HRMs of ARGs, and most host HRMs groups from protein-rich composts. Conclusively, regulating methods for inhibiting ARGs spread for different composts are proposed. HRMs show a higher ARGs dissemination capacity in protein-rich composts than lignocellulose- and lignin-rich composts, but the spread of ARGs can be inhibited by regulate physicochemical parameters in protein-rich composts. In contrary, most HRMs have inhibitory effects on ARGs spread in lignocellulose- and lignin-rich composts, and those HRMs can be used as a new agent that inhibits the spread of ARGs. Our results can help in understanding the potential risk spread of ARGs by inoculating functional bacteria derived from different biowastes composts for environmental remediation, given their expected importance to developing a classification-oriented approach for composting different biowastes. | 2022 | 34600985 |
| 7061 | 11 | 0.9668 | Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum. | 2024 | 38101104 |
| 7133 | 12 | 0.9667 | Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research. | 2017 | 28192677 |
| 7873 | 13 | 0.9667 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 8657 | 14 | 0.9667 | The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges. | 2019 | 30915045 |
| 6934 | 15 | 0.9666 | Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems. | 2025 | 40885182 |
| 8117 | 16 | 0.9665 | Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting. | 2020 | 33099099 |
| 6932 | 17 | 0.9665 | Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. The floating aquatic plant of Azolla imbricata has an outstanding purification capability for polluted river water, and it is also employed to improve soil fertility. However, the occurrence and distribution of antibiotic resistance genes (ARGs) in soil amended using A.imbricata remain unclear. In the soil amendment with A. imbricata, heavy metals, antibiotics, transposase genes, ARGs, and bacterial communities in the soil were determined in this study. The results indicated that the diversity of bacteria and ARGs increased, while the diversity of ARGs decreased under the amendment using an appropriate amount of A. imbricata. The Firmicutes, Chloroflexi, Actinobacteria, and Cyanobacteria were the main host bacteria of ARGs. The vertical gene transfer of ARGs was weak, and the horizontal gene transfer became the dominant transfer pathway of ARGs. The amendment with A. imbricata altered the distribution of heavy metals, antibiotics, transposase genes, ARGs, and dominant bacteria. The amendment using A. imbricata promoted the degradation of antibiotics, decreased the concentrations of available heavy metals, and eliminated the abundance of ARGs and transposase genes. Our findings suggested a comprehensive effect of multiple stresses on the fate of ARGs in soil amended with A. imbricata, providing an insight into the distribution and propagation of ARGs in soil amended using plant residues. | 2019 | 31351286 |
| 6935 | 18 | 0.9664 | Effects of soil protists on the antibiotic resistome under long term fertilization. Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers. | 2022 | 35609845 |
| 7949 | 19 | 0.9663 | Tetracycline and quinolone contamination mediate microbial and antibiotic resistant gene composition in epiphytic biofilms of mesocosmic wetlands. The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs). Results showed that submerged plants absorbed more antibiotics than sediment. Both TCs and QNs disrupted microbial communities in different ways and increased eukaryotic community diversity in a concentration-dependent manner (2-4 mg/L for CIP, 4-8 mg/L for TC). TCs mainly inhibited epiphytic bacteria, while CIP increased bacterial phyla abundance. TC reduced Cyanobacteriota, Acidobacteriota, and Patescibacteria but increased Bacillota, Bacteroidota, and Armatimonadota. In contrast, CIP reduced Bacteroidota, Cyanobacteriota, and Gemmatimonadota but increased Bacillota, Planctomycetota, and Acidobacteriota. Significant differences in ARG profiles were observed between QNs and TCs, with TCs having a more substantial effect on ARGs due to their stronger impact on bacterial communities. Both antibiotics raised ARG levels with higher concentrations, particularly for multidrug resistance, tetracyclines, trimethoprim, sulfonamides, aminoglycosides, and fosfomycin, emphasizing their role in antimicrobial resistance. The study suggests that antibiotics can either stimulate or inhibit ARGs depending on their effects on bacterial communities. This study provides key evidence on the ecological mechanisms underlying the impact of TCs and QNs on epiphytic microbes of mesocosm wetlands. | 2024 | 39321725 |