# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1226 | 0 | 0.9973 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1252 | 1 | 0.9971 | Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively. | 2022 | 36453351 |
| 1233 | 2 | 0.9970 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1251 | 3 | 0.9969 | Biofilm Formation and Plasmid-Mediated Quinolone Resistance Genes at Varying Quinolone Inhibitory Concentrations in Quinolone-Resistant Bacteria Superinfecting COVID-19 Inpatients. The likelihood of antimicrobial failure in COVID-19 patients with bacterial superinfection arises from both phenotypic (biofilms) and genotypic mechanisms. This cross-sectional study aimed to determine the inhibitory concentrations of quinolones-nalidixic acid, norfloxacin, ciprofloxacin, ofloxacin, and levofloxacin-in biofilm formers (minimum biofilm inhibitory concentration [MBIC]) and nonformers (minimum inhibitory concentration [MIC]) and correlate inhibitory concentrations with plasmid-mediated quinolone resistance (PMQR) genes in quinolone-resistant bacteria isolated from COVID-19 inpatients. Quinolone-resistant bacteria (n = 193), verified through disc diffusion, were tested for quinolone inhibitory concentrations using broth microdilution and biofilm formation using microtiter plate methods. The polymerase chain reaction was used to detect PMQR genes. Study variables were analyzed using SPSS v.17.0, with a significance level set at P <0.05. MIC-to-MBIC median fold increases for ciprofloxacin, ofloxacin, and levofloxacin were 128 (2-8,192), 64 (4-1,024), and 32 (4-512) in gram-positive cocci (GPC, n = 43), respectively, whereas they were 32 (4-8,192), 32 (4-2,048), and 16 (2-1,024) in fermentative gram-negative bacilli (F-GNB, n = 126) and 16 (4-4,096), 64 (2-64), and 16 (8-512) in nonfermentative gram-negative bacilli (NF-GNB, n = 24). In biofilm-forming F-GNB and NF-GNB, qnrB (10/32 versus 3/10), aac(6')-Ib-cr (10/32 versus 4/10), and qnrS (9/32 versus 0/10) genes were detected. A 32-fold median increase in the MIC-to-MBIC of ciprofloxacin was significantly (P <0.05) associated with qnrA in F-GNB and qnrS in NF-GNB. Biofilms formed by F-GNB and NF-GNB were significantly associated with the aac(6')-Ib-cr and qnrS genes, respectively. Nearly one-third of the superinfecting bacteria in COVID-19 patients formed biofilms and had at least one PMQR gene, thus increasing the need for quinolones at higher inhibitory concentrations. | 2025 | 39561392 |
| 1232 | 4 | 0.9969 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1295 | 5 | 0.9969 | Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas. | 2009 | 19168331 |
| 1294 | 6 | 0.9968 | Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. OBJECTIVE: This study aimed to isolate and identify Escherichia coli from broiler samples from Sukabumi, Indonesia. Also, antibiogram studies of the isolated bacteria were carried out considering the detection of the antibiotic resistance genes. MATERIALS AND METHODS: Cloaca swabs (n = 45) were collected from broilers in Sukabumi, Indonesia. Isolation and identification of E. coli were carried out according to standard bacteriological techniques and biochemical tests, followed by confirmation of the polymerase chain reaction targeting the uspA gene. Antibiotic sensitivity test, using several antibiotics [tetracycline (TE), oxytetracycline (OT), ampicillin (AMP), gentamicin (CN), nalidixic acid (NA), ciprofloxacin (CIP), enrofloxacin (ENR), chloramphenicol, and erythromycin] was carried out following the Kirby-Bauer disk diffusion method. Detection of antibiotic resistance coding genes was carried out by PCR using specific oligonucleotide primers. Statistical analysis was carried out with one-way analysis of variance. RESULTS: The results showed that 55.6% (25/45) of the samples were associated with the presence of E. coli. Antibiotic sensitivity test showed that the E. coli isolates were resistant to TE (88%; 22/25), OT (88%; 22/25), AMP (100%; 25/25), CN (64%; 16/25), NA (100%; 22/25), CIP (88%; 22/25), ENR (72%; 18/25), chloramphenicol (0%; 0/25), and erythromycin (92%; 23/25). On the other hand, the antibiotic resistance coding genes were tetA (86.4%; 19/22), blaTEM (100%; 25/25), aac(3)-IV (0%; 0/16), gyrA (100%; 25/25), and ermB (13%; 3/23). It was found that chloramphenicol is markedly different from other antibiotic treatment groups. CONCLUSION: Escherichia coli was successfully isolated from cloacal swabs of broiler in Sukabumi, Indonesia. The bacteria were resistant to TE, OT, AMP, CN, NA, CIP, ENR, and erythromycin. Chloramphenicol was more sensitive and effective than other antibiotics in inhibiting the growth of E. coli. The antibiotic resistance genes detected were tetA, blaTEM, gyrA, and ermB. | 2021 | 33860017 |
| 1353 | 7 | 0.9968 | Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats. | 2021 | 33524742 |
| 1487 | 8 | 0.9968 | Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. We evaluated the Verigene Gram-negative blood culture (BC-GN) test, a microarray that detects Gram-negative bacteria and several resistance genes. A total of 102 positive blood cultures were tested, and the BC-GN test correctly identified 97.9% of the isolates within its panel. Resistance genes (CTX-M, KPC, VIM, and OXA genes) were detected in 29.8% of the isolates, with positive predictive values of 95.8% (95% confidence interval [CI], 87.7% to 98.9%) in Enterobacteriaceae and 100% (95% CI, 75.9% to 100%) in Pseudomonas aeruginosa and negative predictive values of 100% (95% CI, 93.9% to 100%) and 78.6% (95% CI, 51.0% to 93.6%), respectively. | 2014 | 24478405 |
| 1454 | 9 | 0.9967 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 1224 | 10 | 0.9967 | Prevalence, antibiotic resistance patterns and molecular characterization of Escherichia coli from Austrian sandpits. The aim was to determine the prevalence of E. coli and coliform bacteria in playground sand of all public children's sandpits in Graz (n = 45), Austria, and to assess the frequency of antimicrobial resistance in E. coli. Molecular characterization included the discrimination of O-serotypes and H-antigens and the determination of virulence and resistance genes, using a microarray technology. E. coli isolates were tested for susceptibility to a set of antibiotics by VITEK2 system and disk diffusion method. In total, 22 (49%) and 44 (98%) sandpits were positive for E. coli and coliform bacteria. Median concentrations of E. coli and coliform bacteria in the sand samples were: 2.6 × 10(4) CFU/100 g and 3.0 × 10(5) CFU/100 g. Resistance rates were: ampicillin, 12.5%; piperacillin, 10.4%; amoxicillin/clavulanic acid, 9.4%; cotrimoxazole, 6.3%; tetracycline, 6.3%; piperacillin/tazobactam, 5.2%. No ESBL- or carbapenemase-producing isolates were found. The most prevalent serogroups were O15, O6 and O4. Isolates harbored 0 up to 16 different virulence genes. | 2014 | 25089889 |
| 1319 | 11 | 0.9967 | Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. | 2016 | 27100915 |
| 1247 | 12 | 0.9966 | Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Antibiotic susceptibility testing was performed on 71 Acinetobacter baumannii clinical isolates, and presence of antibiotic resistance genes was screened for by PCR amplification and sequencing. Resistance rates were very high for aminoglycosides (22-80%), fluoroquinolones (>90%), and cephalosporins (>90%) but remained low for rifampin (2.8%) or null for colistin. Antibiotic resistance encoding genes detected were as follows: blaTEM-128 gene (74.6%), aph(3')-VI (50.7 %), aadA (63.4%), ant(2″)-I (14.1%), aac(3)-Ia (91.1%), aac(6')-Ib (4.2%), mutation Ser83Leu in gyrA (94.4%), double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%), and mutation I581N in RRDR of the rpoB gene. | 2013 | 23688522 |
| 1301 | 13 | 0.9966 | Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat. | 2020 | 32440171 |
| 1354 | 14 | 0.9966 | The prevalence, antibiotic resistance and multilocus sequence typing of colistin-resistant bacteria isolated from Penaeus vannamei farms in earthen ponds and HDPE film-lined ponds in China. The aquaculture environment, especially the culture ponds and aquaculture products, is considered to be an important reservoir of colistin resistance genes. However, systematic investigations of colistin resistance in Penaeus vannamei farming in different culture modes are scarce. In this study, a total of 93 non-duplicated samples were collected from P. vannamei farms in five cities in China from 2019 to 2021. The prevalence, antibiotic resistance and multilocus sequence typing (MLST) of colistin-resistant bacteria were measured and analysed. The results showed that among the 1601 isolates in P. vannamei and its environmental samples, the pollution of colistin-resistant bacteria was serious (the overall prevalence was 37.3% and 28.8%, respectively), regardless of the earthen pond or high-density polyethylene (HDPE) film-lined pond. Among 533 isolates, the prevalence of mobile colistin resistance (mcr) genes, mcr-1, was the highest (60%, 320/533), followed by mcr-4 (1.5%, 8/533), mcr-8 (0.9%, 5/533), mcr-10 (0.6%, 3/533) and mcr-7 (0.4%, 2/533). The prevalence of mcr-1 in earthen ponds was significantly higher than that in HDPE film-lined ponds (67.5% vs. 49.1%, p < .001). The dominant strain carrying mcr-1 was Bacillus spp. (54.1%, 173/320), followed by Enterobacter spp. (8.1%, 26/320), Staphylococcus spp. (6.3%, 20/320) and Aeromonas spp. (5.3%, 17/320). The antibiotic resistance profiles of 173 Bacillus spp. varied among different sampling locations and culture types. These isolates were highly resistant to cefepime, ceftriaxone, trimethoprim-sulfamethoxazole and ceftiofur (>45%), and multidrug-resistant isolates were common (62.4%, 108/173). Sequence type (ST) 26 (37/66, 56%) was found to be the most prevalent ST in mcr-1-positive Bacillus cereus isolated from the aquaculture environment. In summary, our study pointed out that it is necessary to continuously monitor antibiotic usage and its residues regardless of the pond types, especially with regard to critical drugs such as colistin. | 2022 | 35841601 |
| 1299 | 15 | 0.9966 | Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health. | 2021 | 34129676 |
| 1236 | 16 | 0.9966 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 2180 | 17 | 0.9965 | Isolation and characterization of multidrug-resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China. Antimicrobials are the most important therapy to bovine mastitis. Bacterial infection and antibiotic treatment of mastitis cycles frequently in dairy farms worldwide, giving rise to concerns about the emergence of multidrug-resistant (MDR) bacteria. In this study, we examined the microbial diversity and antibiotic resistance profiles of bacteria isolated from raw milk from dairy farms in Jiangsu and Shandong provinces, China. Raw milk samples were collected from 857 dairy cattle including 800 apparently healthy individuals and 57 cows with clinical mastitis (CM) and subjected to microbiological culture, antimicrobial susceptibility assay and detection of antibiotic-resistant genes by polymerase chain reaction (PCR) and sequencing. A total of 1,063 isolates belonging to 41 different bacterial genera and 86 species were isolated and identified, of which Pseudomonas spp. (256/1,063, 24.08%), Staphylococcus. spp. (136/1,063, 12.79%), Escherichia coli (116/1,063, 10.91%), Klebsiella spp. (104/1,063, 9.78%) and Bacillus spp. (84/1,063, 7.90%) were most frequently isolated. K. pneumoniae, one of the most prevalent bacteria, was more frequently isolated from the farms in Jiangsu (65/830, 7.83%) than Shandong (1/233, 0.43%) province, and showed a positive association with CM (p < .001). The antimicrobial susceptibility assay revealed that four of the K. pneumoniae isolates (4/66, 6.06%) were MDR bacteria (acquired resistance to ≥three classes of antimicrobials). Furthermore, among 66 isolates of K. pneumoniae, 21.21% (14/66), 13.64% (9/66) and 12.12% (8/66) were resistant to tetracycline, chloramphenicol and aminoglycosides, respectively. However, all K. pneumoniae isolates were sensitive to monobactams and carbapenems. The detection of antibiotic-resistant genes confirmed that the β-lactamase genes (bla(SHV) and bla(CTX-M) ), aminoglycoside modifying enzyme genes [aac(6')-Ib, aph(3')-I and ant(3″)-I], tetracycline efflux pump (tetA) and transposon genetic marker (intI1) were positive in MDR isolates. This study indicated that MDR K. pneumoniae isolates emerged in dairy farms in Jiangsu province and could be a potential threat to food safety and public health. | 2021 | 32780945 |
| 1223 | 18 | 0.9965 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 1298 | 19 | 0.9965 | Molecular investigation of macrolide and Tetracycline resistances in oral bacteria isolated from Tunisian children. OBJECTIVE: This study aims to investigate the antibiotic susceptibility of strains isolated from the oral cavity of Tunisian children. DESIGN: Strains were isolated from the oral cavity of Tunisian children (60 caries-actives and 30 caries-free). Molecular characterization was assessed by PCR assay to detect erythromycin methylase gene (ermB), macrolide efflux (mefI) and tetracycline resistance genes (tetM and tetO). RESULTS: A total of 21 species were isolated and identified. Antimicrobial susceptibility revealed that the resistance rate to antibiotics was as follow: erythromycin (22%), tetracycline (15.6%), cefotaxim, (7.3%), trimethoprim-sulfamethoxazol (37.6%), nitrofurantoine (2.8%), pristinamycin (17.4%), quinupristin-dalfopristin (15.6%), and rifampicin (3.7%). The majority of mefI positive strains (31.2%) were isolated from the carious children (n=34) in comparison with 8.25% from the control group (n=9). In addition, frequency of strains caring resistance genes were as follow: 12.84% for ermB, 9.17% for tetM and 27.52% for tetO from the carious children in comparison to 0.092%, 3.67% and 3.67% from the caries free group respectively. CONCLUSION: Multi-resistance strains towards macrolides and tetracycline were recorded. The majority of strains carrying antibiotics resistance genes were isolated from the caries active children. The presence of multi-resistant bacteria in the oral cavity can be the major cause of antibiotic prophylaxis failure in dental practise. | 2011 | 20950793 |