RESISTANCES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
363100.9980Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Twelve hundred enterobacterial Escherichia coli isolates of porcine origin were screened phenotypically for antibiotic resistance. The bacteria were isolated from 10 herds of swine with different histories of exposure to antimicrobial agents for therapeutic purposes. The bacterial isolates were part of the normal bacterial flora of the intestines of the animals because they were isolated from healthy individuals. The strains were tested for phenotypic antibiotic resistance against sulfonamides, trimethoprim, streptomycin, ampicillin, neomycin, chloramphenicol, and tetracycline. Resistance against streptomycin was found to be most common, followed by resistance against sulfonamides and tetracycline. The highest number of resistant bacteria was found in herds where the use of antimicrobial agents was considered to be high. A selection of multiresistant bacterial isolates were further genetically characterized by hybridization with probes specific for the antibiotic resistance genes; sulI, sulII, dfrI, dfrIIb, dfrIX, and the class A, B, C, and D tetracycline resistance determinants. A PCR was developed and used for detection of the strA-strB gene pair encoding streptomycin resistance in gram-negative bacteria. The strA-strB gene pair was the most frequent resistance determinant in the isolates examined. This study indicates that nonpathogenic E. coli from swine may represent a considerable reservoir of antibiotic resistance genes that might be transferable to pathogens.19989988047
363010.9977Antimicrobial susceptibilities of Aeromonas spp. isolated from environmental sources. Aeromonas spp. are ubiquitous aquatic bacteria that cause serious infections in both poikilothermic and endothermic animals, including humans. Clinical isolates have shown an increasing incidence of antibiotic and antimicrobial drug resistance since the widespread use of antibiotics began. A total of 282 Aeromonas pure cultures were isolated from both urban and rural playa lakes in the vicinity of Lubbock, Texas, and several rivers in West Texas and New Mexico. Of these, at least 104 were subsequently confirmed to be independent isolates. The 104 isolates were identified by Biolog and belonged to 11 different species. The MICs of six metals, one metalloid, five antibiotics, and two antimicrobial drugs were determined. All aeromonads were sensitive to chromate, cobalt, copper, nickel, zinc, cefuroxime, kanamycin, nalidixic acid, ofloxacin, tetracycline, and sulfamethoxazole. Low incidences of trimethoprim resistance, mercury resistance, and arsenite resistance were found. Dual resistances were found in 5 of the 104 Aeromonas isolates. Greater numbers of resistant isolates were obtained from samples taken in March versus July 2002 and from sediment versus water. Plasmids were isolated from selected strains of the arsenite- and mercury-resistant organisms and were transformed into Escherichia coli XL1-Blue MRF'. Acquisition of the resistance phenotypes by the new host showed that these resistance genes were carried on the plasmids. Mercury resistance was found to be encoded on a conjugative plasmid. Despite the low incidence of resistant isolates, the six playa lakes and three rivers that were sampled in this study can be considered a reservoir for antimicrobial resistance genes.200616950901
364020.9977Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Antibiotic resistant bacteria from commercial demersal and pelagic fish captured in the Concepción Bay, Chile were investigated. Viable counts of antibiotic resistant bacteria isolated from gill and intestinal content samples showed high frequencies of resistance to ampicillin, streptomycin and tetracycline, while the proportion of chloramphenicol resistance was rather low. A high incidence of resistance to ampicillin, streptomycin, tetracycline and nitrofurantoin, as well as almost an absence of resistance to gentamicin, amikacin and cotrimoxazole was found among selected isolates which represented the resistant bacterial population. These strains mainly belonged to Vibrionaceae and Enterobacteriaceae and were predominantly resistant to 3 and 4 antibacterials. Isolates from demersal fish exhibited resistance to as many as 8-10 compounds, whereas those from pelagic fish were resistant to seven or fewer antibiotics. These results suggest that Chilean commercial fishes residing in waters near the disposals of urban sewage might play a role as carriers of antibiotic resistant bacteria prompting a health risk to public health for fish consumers.200111763221
365230.9977Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms (Tenebrio molitor L.). In the present study, the distribution of antibiotic resistance genes in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.), their feeding substrates (carrots and wheatmeal), and frass was assessed. Microbial counts on selective media added with antibiotics highlighted the presence of lactic acid bacteria resistant to ampicillin and vancomycin and, more specifically, enterococci resistant to the latter antibiotic. Moreover, staphylococci resistant to gentamicin, erythromycin, tetracycline, and vancomycin were detected. Enterobacteriaceae resistant to ampicillin and gentamicin were also found, together with Pseudomonadaceae resistant to gentamicin. Some of the genes coding for resistance to macrolide-lincosamide-streptogramin B (MLS(B)) [erm(A), erm(C)], vancomycin [vanA, vanB], tetracycline [tet(O)], and β-lactams [mecA and blaZ] were absent in all of the samples. For the feeding substrates, organic wheatmeal was positive for tet(S) and tet(K), whereas no AR genes were detected in organic carrots. The genes tet(M), tet(K), and tet(S) were detected in both mealworms and frass, whereas gene aac-aph, coding for resistance to amynoglicosides was exclusively detected in frass. No residues for any of the 64 antibiotics belonging to 10 different drug classes were found in either the organic wheatmeal or carrots. Based on the overall results, the contribution of feed to the occurrence of antibiotic resistance (AR) genes and/or antibiotic-resistant microorganisms in mealworm larvae was hypothesized together with vertical transmission via insect egg smearing.201830510544
599340.9977Genetic basis of erythromycin resistance in oral bacteria. We determined the prevalence of erythromycin-resistant bacteria in the oral cavity and identified mef and erm(B) as the most common resistance determinants. In addition, we demonstrate the genetic linkage, on various Tn1545-like conjugative transposons, between erythromycin and tetracycline resistance in a number of isolates.200415155239
288450.9977Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. A potential bioindicator of marine contamination? Antibiotic resistance in bacteria is a growing problem that is not only restricted to the clinical setting but also to other environments such as marine species that harbor antibiotic resistant bacteria and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to evaluate antibiotic resistance phenotypes in enterococci isolated from fecal samples of gilthead seabream and the associated mechanisms of resistance. A collection of 118 samples were analyzed and 73 enterococci were recovered. The strains showed high percentages of resistance to erythromycin and tetracycline (58.9% and 17.8%, respectively). Lower level of resistance (<13%) was detected for quinupristin-dalfopristin, ampicillin, high-level-gentamicin, high-level-streptomycin, high-level-kanamycin, ciprofloxacin and chloramphenicol. The erm(B), tet(L) or tet(M), aac(6')-aph(2″) and aph(3')-IIIa genes were shown in isolates resistant to erythromycin, tetracycline, high-level gentamicin and high-level kanamycin, respectively. Antibiotic resistance in natural microbiota is becoming a concern of human and environmental health.201121511306
365760.9977A survey of antibiotic resistance in Micrococcaceae isolated from Italian dry fermented sausages. The transfer of bacteria that are resistant to antimicrobial agents or resistance genes from animals to humans via the food chain is increasingly a problem. Therefore, it is important to determine the species and the numbers of bacteria involved in this phenomenon. For this purpose, 148 strains of microstaphylococci were isolated from three types of Italian dry fermented sausages. Eight of 148 strains belonged to the genera Kocuria and Micrococcus. The remaining 140 strains belonged to 11 different species of the genus Staphylococcus. The species most frequently isolated was Staphylococcus xylosus, followed by Staphylococcus saprophyticus and Staphylococcus aureus. Antibiotic resistance levels differed among the species and depended on the strain origin. Microstaphylococci were generally susceptible to beta-lactams, but 12 strains were resistant to methicillin, 8 were resistant to oxacillin, and 9 were resistant to penicillin G. No resistance was observed for aminoglicosides and cephalosporines. Many strains were resistant to sulfonamide, colistin suphate, tetracyclin, and bacitracin. Two strains of S. aureus, four strains of S. xylosus, and one strain of Staphylococcus sciuri were able to grow in the presence of 8 microg of vancomycin per g, but all strains were susceptible to teicoplanin. Twenty-two microstaphylococci were resistant to at least five of the tested antibiotics. The multiresistant strain S. aureus 899 was unaffected by eight antibiotics, including vancomycin and methicillin, indicating that a more prudent use of antibiotics in animal husbandry and better hygienic conditions during production should be encouraged because they can play a major role in reducing the incidence of such multiresistant microorganisms and the possible spread of the genetic elements of their resistance.200312800992
289170.9977Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Mediterranean herring gulls (Larus cachinnans) were investigated as a possible reservoir of antibiotic resistant bacteria and of cassette-borne resistance genes located in class 1 integrons. Two hundred and fourteen isolates of the family Enterobacteriaceae were collected from cloacal swabs of 92 chicks captured in a natural reserve in the North East of Italy. They showed high percentages of resistance to ampicillin and streptomycin. High percentages of resistance to trimethoprim/sulfamethoxazole were found in Proteus and Citrobacter and to chloramphenicol in Proteus. Twenty-two (10%) isolates carried the intI1 gene. Molecular characterization of the integron variable regions showed a great diversity, with the presence of 11 different cassette arrays and of one integron without integrated cassettes. The dfrA1-aadA1a and aadB-aadA2 cassette arrays were the most frequently detected. Also the estX cassette, alone or in combination with other cassettes, was detected in many isolates. From this study it is concluded that the enteric flora of Mediterranean herring gulls may act as a reservoir of resistant bacteria and of resistance genes. Due to their feeding habits and their ability to fly over long distances, these free-living birds may facilitate the circulation of resistant strains between waste-handling facilities, crops, waters, and urban areas.200818476779
363680.9977Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.200616909348
363990.9976Assessing the Bacterial Community Composition of Bivalve Mollusks Collected in Aquaculture Farms and Respective Susceptibility to Antibiotics. Aquaculture is a growing sector, providing several products for human consumption, and it is therefore important to guarantee its quality and safety. This study aimed to contribute to the knowledge of bacterial composition of Crassostrea gigas, Mytilus spp. and Ruditapes decussatus, and the antibiotic resistances/resistance genes present in aquaculture environments. Two hundred and twenty-two bacterial strains were recovered from all bivalve mollusks samples belonging to the Aeromonadaceae, Bacillaceae, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Micrococcaceae, Moraxellaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Staphylococcaceae, Streptococcaceae, Vibrionaceae, and Yersiniaceae families. Decreased susceptibility to oxytetracycline prevails in all bivalve species, aquaculture farms and seasons. Decreased susceptibilities to amoxicillin, amoxicillin/clavulanic acid, cefotaxime, cefoxitin, ceftazidime, chloramphenicol, florfenicol, colistin, ciprofloxacin, flumequine, nalidixic acid and trimethoprim/sulfamethoxazole were also found. This study detected six qnrA genes among Shewanella algae, ten qnrB genes among Citrobacter spp. and Escherichia coli, three oqxAB genes from Raoultella ornithinolytica and bla(TEM-1) in eight E. coli strains harboring a qnrB19 gene. Our results suggest that the bacteria and antibiotic resistances/resistance genes present in bivalve mollusks depend on several factors, such as host species and respective life stage, bacterial family, farm's location and season, and that is important to study each aquaculture farm individually to implement the most suitable measures to prevent outbreaks.202134572717
4604100.9976Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Gene transfer within bacterial communities has been recognized as a major contributor in the recent evolution of antibiotic resistance on a global scale. The linked strA-strB genes, which encode streptomycin-inactivating enzymes, are distributed worldwide and confer streptomycin resistance in at least 17 genera of gram-negative bacteria. Nucleotide sequence analyses suggest that strA-strB have been recently disseminated. In bacterial isolates from humans and animals, strA-strB are often linked with the suIII sulfonamide-resistance gene and are encoded on broad-host-range nonconjugative plasmids. In bacterial isolates from plants, strA-strB are encoded on the Tn3-type transposon Tn5393 which is generally borne on conjugative plasmids. The wide distribution of the strA-strB genes in the environment suggests that gene transfer events between human, animal, and plant-associated bacteria have occurred. Although the usage of streptomycin in clinical medicine and animal husbandry has diminished, the persistence of strA-strB in bacterial populations implies that factors other than direct antibiotic selection are involved in maintenance of these genes.19969147689
5594110.9976Antibiotic resistance among fecal indicator bacteria from healthy individually owned and kennel dogs. Escherichia coli and Enterococcus faecalis strains isolated from anal swabs of clinically healthy dogs were examined for the presence of acquired antimicrobial resistance. The strains originated from dogs of 92 different owners and from eight breeding kennels. The purpose of the present study was to evaluate the resistance situation in the intestinal flora of the dog to assess the possible role of the dog flora as a reservoir of antimicrobial resistance. Multiple resistance was rarely found in E. coli strains collected from individually owned dogs, in contrast with strains from kennel dogs. Resistance to ampicillin, trimethoprim, and sulfamethoxazole was significantly less prevalent in E. coli from privately owned dogs than in strains from kennel dogs. Resistance rates against tetracycline and macrolides were unexpectedly high in E. faecalis strains. Two and three E. faecalis strains from individually owned dogs and kennel dogs, respectively, were resistant to gentamicin, an antibiotic often used for treating enterococcal infections in humans. This study demonstrates that resistance percentages may fluctuate with the choice of dog population. The observed antimicrobial resistance percentages indicate that the flora of healthy dogs may act as a reservoir of resistance genes.200415140396
2870120.9976Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish. Seawater and shellfish samples collected in the vicinity of a marine sewage outfall were examined for the incidence of antibiotic resistance among coliform and fecal coliform bacteria over a 2-year period. Seventy percent or more of these two groups of bacteria from both sources were resistant to one or more antibiotics. Forty-five percent of the isolates resistant to streptomycin or tetracycline were capable of transferring all or part of their resistance pattern to an antibiotic-susceptible strain of Escherichia coli K-12.1976779632
5991130.9976Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. A strain of Listeria monocytogenes, isolated from a patient with meningoencephalitis, was resistant to chloramphenicol, erythromycin, streptomycin, and tetracycline. The genes conferring resistance to these antibiotics were carried by a 37-kb plasmid, pIP811, that was self-transferable to other L monocytogenes cells, to enterococci-streptococci, and to Staphylococcus aureus. The efficacy of transfer and the stability of pIP811 were higher in enterococci-streptococci than in the other gram-positive bacteria. As indicated by nucleic acid hybridisation, the genes in pIP811 conferring resistance to chloramphenicol, erythromycin, and streptomycin were closely related to plasmid-borne determinants that are common in enterococci-streptococci. Plasmid pIP811 shared extensive sequence homology with pAM beta 1, the prototype broad host range resistance plasmid in these two groups of gram-positive cocci. These results suggest that emergence of multiple antibiotic resistance in Listeria spp is due to acquisition of a replicon originating in enterococci-streptococci. The dissemination of resistance to other strains of L monocytogenes is likely.19901972210
3655140.9976Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal. Wild animal populations in contact with antimicrobials and antimicrobial resistant bacteria that are daily released into the environment are able to become unintentional hosts of these resistant microorganisms. To clarify this issue, our study evaluated the presence of antibiotic resistance determinants on coagulase-negative staphylococci recovered from birds of prey and studied their genetic relatedness by pulsed-field gel electrophoresis (PFGE). The unusual vga(A) and erm(T) genes, which confer resistance to clindamycin and erythromycin, respectively, were detected in Staphylococcus sciuri or Staphylococcus xylosus strains and the tet(K) gene in Staphylococcus kloosii. The PFGE patterns showed that three S. xylosus (isolated of Strix aluco and Otus scops) and two S. sciuri (recovered from Strix aluco and Milvus migrans) were clonally indistinguishable. These animals could be a source of unusual antimicrobial resistance determinants for highly used antibiotics in veterinary clinical practice.201626990729
3588150.9976Metal and antibiotic resistance of bacteria isolated from the Baltic Sea. The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.201223847817
3629160.9976Unregulated use of antibiotics in Siliguri city vis-a-vis occurrence of MAR bacteria in community waste water and river Mahananda, and their potential for resistance gene transfer. The unregulated use of antibiotics, including therapeutic and prophylactic prescribing, in the fastest growing city of West Bengal, Siliguri, was studied indirectly from a random survey conducted on retail medicine sellers at their counters. Ciprofloxacin, ampicillin, norfioxacin and amoxycillin were the highest retailed antibiotics and 58% of the city pharmacies sold antibiotics even without prescriptions. To understand the influence of the extent of antibiotic use by the community on the collective bacterial flora in the aquatic environment, we have determined the fraction(s) of Standard Plate Count (SPC) bacteria resistant to different antibiotics and multiple antibiotic resistance (MAR) profile of resistant SPC isolates from two municipal open drains and Mahananda river water samples of Siliguri. Within the MAR groups of Drain I and Drain II samples, 37.44% and 77.43% respectively were resistant to all seven antibiotics (ampicillin, chloramphenicol, ciprofloxacin, kanamycin, netilmicin, streptomycin and tetracycline) used in the study. Twenty Gram-negative SPC MAR isolates were examined for the presence of plasmids. Antibiotic resistance was shown to be associated with a carriage of a 47 kb (D1QN - 9), 48 kb (D2QN - 14) and 49.4 and 3.6 kb (MR - 1) plasmids, which were transmissible to the Escherichia coli DH5alpha recipient. The rapid spread of antibiotic resistance genes in bacterial population as a consequence of indiscriminate use of antibiotics, which can be partly attributed to plasmid-mediated horizontal transfer was discussed.200516161978
2851170.9976Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta.201020356660
3634180.9976Molecular characterizations of chloramphenicol- and oxytetracycline-resistant bacteria and resistance genes in mariculture waters of China. In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discushannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibriosplendidus and Vibriotasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes.200919303610
4605190.9976Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine. The resistance genes and their surroundings on three self-transmissible plasmids found in Escherichia coli of the enteric normal flora of healthy pigs have been characterized. The resistance elements found are similar to those commonly found in clinical isolates, like the transposon Tn1721 including the Tet A tetracycline resistance determinant, Tn10 with the Tet B determinant, Tn21 including a class 1 integron with the aadA1a cassette inserted, sulII encoding sulfonamide resistance, and the strA-strB genes responsible for streptomycin resistance. The plasmids were able to mobilize into various recipients, including swine pathogens, zoonotic bacteria, and commensals when conjugation experiments were carried out. Transfer of plasmids did not require optimal conditions concerning nutrition and temperature as plasmids were transferred in 0.9% saline at room temperature, suggesting that in vivo transfer might be possible. This study shows that transferable resistance elements appearing in normal flora bacteria from animals are similar to those commonly found in clinical isolates of human origin. The results indicate a probable communication between pathogens and the normal flora with respect to exchange of resistance factors.200111442346