# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9872 | 0 | 0.9940 | pCTX-M3-Structure, Function, and Evolution of a Multi-Resistance Conjugative Plasmid of a Broad Recipient Range. pCTX-M3 is the archetypic member of the IncM incompatibility group of conjugative plasmids (recently referred to as IncM2). It is responsible for the worldwide dissemination of numerous antibiotic resistance genes, including those coding for extended-spectrum β-lactamases and conferring resistance to aminoglycosides. The IncM plasmids acquired during evolution diverse mobile genetic elements found in one or two multiple resistance regions, MRR(s), grouping antibiotic resistance genes as well as mobile genetic elements or their remnants. The IncM plasmids can be found in bacteria inhabiting various environments. The information on the structure and biology of pCTX-M3 is integrated in this review. It focuses on the functional modules of pCTX-M3 responsible for its replication, stable maintenance, and conjugative transfer, indicating that the host range of the pCTX-M3 replicon is limited to representatives of the family Enterobacteriaceae (Enterobacterales ord. nov.), while the range of recipients of its conjugation system is wide, comprising Alpha-, Beta-, and Gammaproteobacteria, and also Firmicutes. | 2021 | 33925677 |
| 5153 | 1 | 0.9938 | Single-Molecule Sequencing (PacBio) of the Staphylococcus capitis NRCS-A Clone Reveals the Basis of Multidrug Resistance and Adaptation to the Neonatal Intensive Care Unit Environment. The multi-resistant Staphylococcus capitis clone NRCS-A has recently been described as a major pathogen causing nosocomial, late-onset sepsis (LOS) in preterm neonates worldwide. NRCS-A representatives exhibit an atypical antibiotic resistance profile. Here, the complete closed genome (chromosomal and plasmid sequences) of NRCS-A prototype strain CR01 and the draft genomes of three other clinical NRCS-A strains from Australia, Belgium and the United Kingdom are annotated and compared to available non-NRCS-A S. capitis genomes. Our goal was to delineate the uniqueness of the NRCS-A clone with respect to antibiotic resistance, virulence factors and mobile genetic elements. We identified 6 antimicrobial resistance genes, all carried by mobile genetic elements. Previously described virulence genes present in the NRCS-A genomes are shared with the six non-NRCS-A S. capitis genomes. Overall, 63 genes are specific to the NRCS-A lineage, including 28 genes located in the methicillin-resistance cassette SCCmec. Among the 35 remaining genes, 25 are of unknown function, and 9 correspond to an additional type I restriction modification system (n = 3), a cytosine methylation operon (n = 2), and a cluster of genes related to the biosynthesis of teichoic acids (n = 4). Interestingly, a tenth gene corresponds to a resistance determinant for nisin (nsr gene), a bacteriocin secreted by potential NRCS-A strain niche competitors in the gut microbiota. The genomic characteristics presented here emphasize the contribution of mobile genetic elements to the emergence of multidrug resistance in the S. capitis NRCS-A clone. No NRCS-A-specific known virulence determinant was detected, which does not support a role for virulence as a driving force of NRCS-A emergence in NICUs worldwide. However, the presence of a nisin resistance determinant on the NRCS-A chromosome, but not in other S. capitis strains and most coagulase-negative representatives, might confer a competitive advantage to NRCS-A strains during the early steps of gut colonization in neonates. This suggests that the striking adaptation of NRCS-A to the NICU environment might be related to its specific antimicrobial resistance and also to a possible enhanced ability to challenge competing bacteria in its ecological niche. | 2016 | 28018320 |
| 1794 | 2 | 0.9935 | Insights into the evolution of gene organization and multidrug resistance from Klebsiella pneumoniae plasmid pKF3-140. Plasmid-mediated transfer of drug-resistance genes among various bacterial species is considered one of the most important mechanisms for the spread of multidrug resistance. To gain insights into the evolution of gene organization and antimicrobial resistance in clinical bacterial samples, a complete plasmid genome of Klebsiella pneumoniae pKF3-140 is determined, which has a circular chromosome of 147,416bp in length. Among the 203 predicted genes, 142 have function assignment and about 50 appear to be involved in plasmid replication, maintenance, conjugative transfer, iron acquisition and transport, and drug resistance. Extensive comparative genomic analyses revealed that pKF3-140 exhibits a rather low sequence similarity and structural conservation with other reported K. pneumoniae plasmids. In contrast, the overall organization of pKF3-140 is highly similar to Escherichia coli plasmids p1ESCUM and pUTI89, which indicates the possibility that K. pneumoniae pKF3-140 may have a potential origin in E. coli. Meanwhile, interestingly, several drug resistant genes show high similarity to the plasmid pU302L in Salmonella enterica serovar Typhimurium U302 strain G8430 and the plasmid pK245 in K. pneumoniae. This mosaic pattern of sequence similarities suggests that pKF3-140 might have arisen from E. coli and acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among enteric bacteria. | 2013 | 23402892 |
| 9987 | 3 | 0.9934 | Four genes essential for recombination define GInts, a new type of mobile genomic island widespread in bacteria. Integrases are a family of tyrosine recombinases that are highly abundant in bacterial genomes, actively disseminating adaptive characters such as pathogenicity determinants and antibiotics resistance. Using comparative genomics and functional assays, we identified a novel type of mobile genetic element, the GInt, in many diverse bacterial groups but not in archaea. Integrated as genomic islands, GInts show a tripartite structure consisting of the ginABCD operon, a cargo DNA region from 2.5 to at least 70 kb, and a short AT-rich 3' end. The gin operon is characteristic of GInts and codes for three putative integrases and a small putative helix-loop-helix protein, all of which are essential for integration and excision of the element. Genes in the cargo DNA are acquired mostly from phylogenetically related bacteria and often code for traits that might increase fitness, such as resistance to antimicrobials or virulence. GInts also tend to capture clusters of genes involved in complex processes, such as the biosynthesis of phaseolotoxin by Pseudomonas syringae. GInts integrate site-specifically, generating two flanking direct imperfect repeats, and excise forming circular molecules. The excision process generates sequence variants at the element attachment site, which can increase frequency of integration and drive target specificity. | 2017 | 28393892 |
| 9846 | 4 | 0.9933 | Integrative Conjugative Elements (ICEs) of the SXT/R391 family drive adaptation and evolution in γ-Proteobacteria. Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases. | 2024 | 36634159 |
| 3027 | 5 | 0.9933 | Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. A novel antibiotic and chromate resistance transposon, Tn5045, was isolated from a permafrost strain of Pseudomonas sp. Tn5045 is a compound transposon composed of three distinct genetic elements. The backbone element is a Tn1013-like Tn3 family transposon, termed Tn1013∗, that contains the tnpA and the tnpR genes, encoding the transposase and resolvase, respectively, the res-site and four genes (orfA, B, C, D) related to different house-keeping genes. The second element is class 1 integron, termed InC∗, which is inserted into the Tn1013∗ res-region and contains 5'-CS-located integrase, 3'-CS-located qacE∆1 and sulfonamide resistance sulI genes, and a single cassette encoding the streptomycin resistance aadA2-gene. The third element is a TnOtChr-like Tn3 family transposon termed TnOtChr∗, which is inserted into the transposition module of the integron and contains genes of chromate resistance (chrB, A, C, F). Tn5045 is the first example of an ancient integron-containing mobile element and also the first characterized compound transposon coding for both antibiotic and chromate, resistance. Our data demonstrate that antibiotic and chromate resistance genes were distributed in environmental bacteria independently of human activities and provide important insights into the origin and evolution of antibiotic resistance integrons. | 2011 | 21262357 |
| 9847 | 6 | 0.9933 | Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements. | 2009 | 20041216 |
| 9874 | 7 | 0.9933 | Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3'-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs. | 2021 | 33582118 |
| 3035 | 8 | 0.9933 | Molecular characterization of plasmids with antimicrobial resistant genes in avian isolates of Pasteurella multocida. The complete nucleotide sequences of two plasmids from avian isolates of Pasteurella multocida that caused outbreaks of fowl cholera in Taiwan were determined. The entire sequences of the two plasmids, designated as pJR1 and pJR2, were 6792 bp and 5252 bp. Sequence analysis showed that the plasmid pJR1 contained six major genes: the first gene (sulII) encoded a type II sulfonamide resistant dihydropteroate synthase, the second gene (tetG) encoded a tetracycline resistance protein, the third gene (catB2) encoded a chloramphenicol acetyltransferase, the fourth gene (rep) encoded a replication protein, and the fifth and sixth genes (mbeCy and deltambeAy) encoded proteins involved in the mobilization of plasmid. The plasmid pJR2 contained five major genes: the first gene (deltaintI1) encoded a truncated form of a type I integrase, the second gene (aadA1) encoded an aminoglycoside adenylyltransferase that confers resistance to streptomycin and spectinomycin, the third gene (blaP1) encoded a beta-lactamase that confers resistance to ampicillin and carbenicillin, and the fourth and fifth genes might encode proteins involved in the plasmid replication or segregation. Sequence comparisons showed that the antibiotic resistance genes found in pJR1 and pJR2 exhibited a high degree of sequence homology to the corresponding genes found in a great variety of gram-negative bacteria, including Escherichia coli, Salmonella enterica Typhimurium DT104, Psedomonas spp., P. multocida, Mannheimia spp., and Actinobacills pleuropneumoniae, which suggests that these resistance genes were disseminated in these bacteria. Although sulII and tetG genes were found previously in P. multocida or Mannheimia spp., this is the first report on the presence of catB2, aadA1, and blaP1 genes in bacteria of the family Pasturellaceae. Moreover, the aadA1 and blaP1 genes found in pJR2 were organized into an integron structure, which is a site-specific recombination system capable of capturing and mobilizing antibiotic resistance genes. This is also the first report on the presence of an integron in bacteria of the family Pasteurellaceae. The presence of a P. multocida integron might facilitate the spreading of antibiotic resistance genes between P. multocida and other gram-negative bacteria. | 2003 | 14708986 |
| 3016 | 9 | 0.9933 | Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. This study presents the first complete sequence of an IncU plasmid, pFBAOT6. This plasmid was originally isolated from a strain of Aeromonas caviae from hospital effluent (Westmorland General Hospital, Kendal, United Kingdom) in September 1997 (G. Rhodes, G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith, and R. W. Pickup, Appl. Environ. Microbiol. 66:3883-3890, 2000) and belongs to a group of related plasmids with global ubiquity. pFBAOT6 is 84,748 bp long and has 94 predicted coding sequences, only 12 of which do not have a possible function that has been attributed. Putative replication, maintenance, and transfer functions have been identified and are located in a region in the first 31 kb of the plasmid. The replication region is poorly understood but exhibits some identity at the protein level with replication proteins from the gram-positive bacteria Bacillus and Clostridium. The mating pair formation system is a virB homologue, type IV secretory pathway that is similar in its structural organization to the mating pair formation systems of the related broad-host-range (BHR) environmental plasmids pIPO2, pXF51, and pSB102 from plant-associated bacteria. Partitioning and maintenance genes are homologues of genes in IncP plasmids. The DNA transfer genes and the putative oriT site also exhibit high levels of similarity with those of plasmids pIPO2, pXF51, and pSB102. The genetic load region encompasses 54 kb, comprises the resistance genes, and includes a class I integron, an IS630 relative, and other transposable elements in a 43-kb region that may be a novel Tn1721-flanked composite transposon. This region also contains 24 genes that exhibit the highest levels of identity to chromosomal genes of several plant-associated bacteria. The features of the backbone of pFBAOT6 that are shared with this newly defined group of environmental BHR plasmids suggest that pFBAOT6 may be a relative of this group, but a relative that was isolated from a clinical bacterial environment rather than a plant-associated bacterial environment. | 2004 | 15574953 |
| 8390 | 10 | 0.9932 | Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms. Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation. | 2017 | 28293682 |
| 478 | 11 | 0.9932 | Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers. | 2018 | 29967598 |
| 9966 | 12 | 0.9931 | The A to Z of A/C plasmids. Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future. | 2015 | 25910948 |
| 3018 | 13 | 0.9931 | The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. | 1991 | 1946749 |
| 8367 | 14 | 0.9931 | A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains. Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes. | 2013 | 24069455 |
| 9866 | 15 | 0.9931 | Integrons in Xanthomonas: a source of species genome diversity. Integrons are best known for assembling antibiotic resistance genes in clinical bacteria. They capture genes by using integrase-mediated site-specific recombination of mobile gene cassettes. Integrons also occur in the chromosomes of many bacteria, notably beta- and gamma-Proteobacteria. In a survey of Xanthomonas, integrons were found in all 32 strains representing 12 pathovars of two species. Their chromosomal location was downstream from the acid dehydratase gene, ilvD, suggesting that an integron was present at this site in the ancestral xanthomonad. There was considerable sequence and structural diversity among the extant integrons. The majority of integrase genes were predicted to be inactivated by frameshifts, stop codons, or large deletions, suggesting that the associated gene cassettes can no longer be mobilized. In support, groups of strains with the same deletions or stop codons/frameshifts in their integrase gene usually contained identical arrays of gene cassettes. In general, strains within individual pathovars had identical cassettes, and these exhibited no similarity to cassettes detected in other pathovars. The variety and characteristics of contemporary gene cassettes suggests that the ancestral integron had access to a diverse pool of these mobile elements, and that their genes originated outside the Xanthomonas genome. Subsequent inactivation of the integrase gene in particular lineages has largely fixed the gene cassette arrays in particular pathovars during their differentiation and specialization into ecological niches. The acquisition of diverse gene cassettes by different lineages within Xanthomonas has contributed to the species-genome diversity of the genus. The role of gene cassettes in survival on plant surfaces is currently unknown. | 2005 | 15755815 |
| 9964 | 16 | 0.9930 | Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae. Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. | 2015 | 26236726 |
| 9069 | 17 | 0.9930 | Pdif-mediated antibiotic resistance genes transfer in bacteria identified by pdifFinder. Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder. | 2023 | 36470841 |
| 5143 | 18 | 0.9930 | Genomic Insights Into the Pathogenicity of a Novel Biofilm-Forming Enterococcus sp. Bacteria (Enterococcus lacertideformus) Identified in Reptiles. Whole genome analysis of a novel species of enterococci, Enterococcus lacertideformus, causing multi-systemic and invariably fatal disease in critically endangered Christmas Island reptiles was undertaken to determine the genetic elements and potential mechanisms conferring its pathogenic nature, biofilm-forming capabilities, immune recognition avoidance, and inability to grow in vitro. Comparative genomic analyses with related and clinically significant enterococci were further undertaken to infer the evolutionary history of the bacterium and identify genes both novel and absent. The genome had a G + C content of 35.1%, consisted of a circular chromosome, no plasmids, and was 2,419,934 bp in length (2,321 genes, 47 tRNAs, and 13 rRNAs). Multi-locus sequence typing (MLST), and single nucleotide polymorphism (SNP) analysis of multiple E. lacertideformus samples revealed they were effectively indistinguishable from one another and highly clonal. E. lacertideformus was found to be located within the Enterococcus faecium species clade and was closely related to Enterococcus villorum F1129D based on 16S rDNA and MLST house-keeping gene analysis. Antimicrobial resistance (DfreE, EfrB, tetM, bcrRABD, and sat4) and virulence genes (Fss3 and ClpP), and genes conferring tolerance to metals and biocides (n = 9) were identified. The detection of relatively few genes encoding antimicrobial resistance and virulence indicates that this bacterium may have had no exposure to recently developed and clinically significant antibiotics. Genes potentially imparting beneficial functional properties were identified, including prophages, insertion elements, integrative conjugative elements, and genomic islands. Functional CRISPR-Cas arrays, and a defective prophage region were identified in the genome. The study also revealed many genomic loci unique to E. lacertideformus which contained genes enriched in cell wall/membrane/envelop biogenesis, and carbohydrate metabolism and transport functionality. This finding and the detection of putative enterococcal biofilm determinants (EfaAfs, srtC, and scm) may underpin the novel biofilm phenotype observed for this bacterium. Comparative analysis of E. lacertideformus with phylogenetically related and clinically significant enterococci (E. villorum F1129D, Enterococcus hirae R17, E. faecium AUS0085, and Enterococcus faecalis OG1RF) revealed an absence of genes (n = 54) in E. lacertideformus, that encode metabolic functionality, which potentially hinders nutrient acquisition and/or utilization by the bacterium and precludes growth in vitro. These data provide genetic insights into the previously determined phenotype and pathogenic nature of the bacterium. | 2021 | 33737921 |
| 9867 | 19 | 0.9930 | Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Mosaic plasmids, plasmids composed of genetic elements from distinct sources, are associated with the spread of antibiotic resistance genes. Transposons are considered the primary mechanism for mosaic plasmid formation, though other mechanisms have been observed in specific instances. The frequency with which mosaic plasmids have been described suggests they may play an important role in plasmid population dynamics. Our survey of the confirmed plasmid sequences available from complete and draft genomes in the RefSeq database shows that 46% of them fit a strict definition of mosaic. Mosaic plasmids are also not evenly distributed over the taxa represented in the database. Plasmids from some genera, including Piscirickettsia and Yersinia, are almost all mosaic, while plasmids from other genera, including Borrelia, are rarely mosaic. While some mosaic plasmids share identical regions with hundreds of others, the median mosaic plasmid only shares with 8 other plasmids. When considering only plasmids from finished genomes (51.6% of the total), mosaic plasmids have significantly higher proportions of transposase and antibiotic resistance genes. Conversely, only 56.6% of mosaic fragments (DNA fragments shared between mosaic plasmids) contain a recognizable transposase gene, and only 1.2% of mosaic fragments are flanked by inverted repeats. Mosaic fragments associated with the IS26 transposase gene are 3.8-fold more abundant than any other sequence shared between mosaic plasmids in the database, though this is at least partly due to overrepresentation of Enterobacteriaceae plasmids. Mosaic plasmids are a complicated trait of some plasmid populations, only partly explained by transposition. Though antibiotic resistance genes led to the identification of many mosaic plasmids, mosaic plasmids are a broad phenomenon encompassing many more traits than just antibiotic resistance. Further research will be required to determine the influence of ecology, host repair mechanisms, conjugation, and plasmid host range on the formation and influence of mosaic plasmids. AUTHOR SUMMARY: Plasmids are extrachromosomal genetic entities that are found in many prokaryotes. They serve as flexible storage for genes, and individual cells can make substantial changes to their characteristics by acquiring, losing, or modifying a plasmid. In some pathogenic bacteria, such as Escherichia coli, antibiotic resistance genes are known to spread primarily on plasmids. By analyzing a database of 8592 plasmid sequences we determined that many of these plasmids have exchanged genes with each other, becoming mosaics of genes from different sources. We next separated these plasmids into groups based on the organism they were isolated from and found that different groups had different fractions of mosaic plasmids. This result was unexpected and suggests that the mechanisms and selective pressures causing mosaic plasmids do not occur evenly over all species. It also suggests that plasmids may provide different levels of potential variation to different species. This work uncovers a previously unrecognized pattern in plasmids across prokaryotes, that could lead to new insights into the evolutionary role that plasmids play. | 2019 | 30797764 |