RELATION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
281500.9974Characterization of cultivable airborne bacteria and their antimicrobial resistance pattern in French milking parlour. The main goal of this preliminary study was to quantify airborne particles and characterize the dominant cultivable bacterial species as well as some Gram-positive species, and their antibiotic resistance pattern, from environmental samples taken inside and outside of a dairy milking parlour. Sampling was performed over 2 days, in different seasons. The small viable particulate matter < 10 μm (bioaerosols) and cultivable bacteria reached their highest concentrations in the milking parlour. The majority of airborne bacteria in the milking parlour belonged to the genera Staphylococcus (41.9%) and Bacillus (20.9%). A total of 32 different bacterial species of Staphylococcus, Aerococcus, Bacillus, Pseudomonas, Serratia and Acinetobacter were identified. Many of these bacteria may be opportunistic pathogens, causing disease in humans or animals. We found low levels of acquired resistance to the antibiotics commonly used in human or animal infections caused by these opportunistic bacteria. More specifically, resistance to tetracyclines (13.4%), penicillin G (13.4%) and macrolides (7.5%) was identified in Staphylococcus sp. as was a methicillin-resistant S. hominis and resistance to spiramycin (n = 1), lincomycin (n = 1) and streptomycin (n = 2) in Aerococcus sp. An assessment of the occupational risk run by dairy farmers for contracting infections after long- or short-term exposure to micro-organisms requires further studies on the concentration of opportunistic pathogenic bacteria in dairy farm environments.202133411281
362310.9974Multiresistant bacteria: Invisible enemies of freshwater mussels. Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to β-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality.202234902528
338420.9972Strong correlation of total phenotypic resistance of samples from household environments and the prevalence of class 1 integrons suggests for the use of the relative prevalence of intI1 as a screening tool for multi-resistance. One of the biggest challenges of health care systems worldwide is the increasing number of pathogenic bacteria resistant to a growing number of antibiotics. In this respect, class 1 integrons which are part of mobile genetic elements can confer several phenotypes including resistance to a broad range of antibiotic classes, heavy metals and biocides. They are linked to common resistance genes and have penetrated pathogenic and commensal bacteria likewise. Therefore its relative prevalence can be a proxy for antimicrobial resistance and anthropogenic pollution. Household environments are areas with a high influx of bacteria from humans, animals and foods, and biocides and detergents are frequently used. In this study we aimed to investigate the relative prevalence of class 1 integrons in household environments, in relation to the number of antibiotic and benzalkonium chloride resistant phenotypes of a sample point, for the validation of the relative prevalence of class 1 integrons as a screening tool for multi-resistance. Kitchen sink and bathroom sink U-bends, dishwasher, washing machines and toothbrushes of 28 households were probed. Copies /mL of class 1 integron integrase gene and 16SrDNA gene were determined by qPCR and bacteria of the respective sample were isolated on ampicillin selective agar plates, followed by the determination of the species and phenotypic resistance profiles. The relative prevalence of class 1 integrons in relation to 16SrDNA was calculated and correlated to phenotypic resistance. Our findings show a high relative prevalence of class 1 integrons in water reticulation systems of household environments and in particular shower U-bends. Furthermore, prevalence of class 1 integrons correlates strongly (rs = 0.95) with total phenotypic resistance at a sample point and suggest that a standardized assay determining the relative prevalence of class 1 integrons could be used as a useful screening tool in the assessment of multi-resistance in environmental samples.201931194819
341930.9972Assessment of Selected Antibiotic Resistances in Ungrazed Native Nebraska Prairie Soils. The inherent spatial heterogeneity and complexity of antibiotic-resistant bacteria and antibiotic resistance (AR) genes in manure-affected soils makes it difficult to sort out resistance that can be attributed to human antibiotic use from resistance that occurs naturally in the soil. This study characterizes native Nebraska prairie soils that have not been affected by human or food-animal waste products to provide data on background levels of resistance in southeastern Nebraskan soils. Soil samples were collected from 20 sites enumerated on tetracycline and cefotaxime media; screened for tetracycline-, sulfonamide-, β-lactamase-, and macrolide-resistance genes; and characterized for soil physical and chemical parameters. All prairies contained tetracycline- and cefotaxime-resistant bacteria, and 48% of isolates collected were resistant to two or more antibiotics. Most (98%) of the soil samples and all 20 prairies had at least one tetracycline gene. Most frequently detected were (D), (A) (O), (L), and (B). Sulfonamide genes, which are considered a marker of human or animal activity, were detected in 91% of the samples, despite the lack of human inputs at these sites. No correlations were found between either phenotypic or genotypic resistance and soil physical or chemical parameters. Heterogeneity was observed in AR within and between prairies. Therefore, multiple samples are necessary to overcome heterogeneity and to accurately assess AR. Conclusions regarding AR depend on the gene target measured. To determine the impacts of food-animal antibiotic use on resistance, it is essential that background and/or baseline levels be considered, and where appropriate subtracted out, when evaluating AR in agroecosystems.201627065391
328940.9972Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany. Antibiotic-resistant bacteria represent an emerging global health problem and are frequently detected in riverine environments. Analyzing the occurrence of corresponding antibiotic-resistant genes in rivers is of public interest as it contributes towards understanding the origin and dissemination of these emerging microbial contaminants via surface water. This is critical for devising strategies to mitigate the spread of resistances in the environment. Concentrations of blaCTX-M antibiotic resistance genes were quantified weekly over a 12-month period in Lahn River surface water at two sampling sites using quantitative real-time PCR. Gene abundances were statistically assessed with regard to previously determined concentrations of fecal indicator organisms Escherichia coli, intestinal enterococci and somatic coliphages, as well as influential environmental factors. Similar seasonal patterns and strong positive correlations between fecal indicators and blaCTX-M genes indicated identical sources. Accordingly, linear regression analyses showed that blaCTX-M concentrations could largely be explained by fecal pollution. E. coli provided the best estimates (75% explained variance) at the upstream site, where proportions of blaCTX-M genes in relation to fecal indicator organisms were highest. At this site, rainfall proved to be more influential, hinting at surface runoff as an emission source. The level of agricultural impact increased from downstream to upstream, linking increasing blaCTX-M concentrations after rainfall events to the degree of agricultural land use. Exposure assessment revealed that even participants in non-swimming recreational activities were at risk of incidentally ingesting blaCTX-M genes and thus potentially antibiotic resistant bacteria. Considering that blaCTX-M genes are ubiquitous in Lahn River and participants in bathing and non-bathing water sports are at risk of exposure, results highlight the importance of microbial water quality monitoring with an emphasis on antibiotic resistance not only in designated bathing waters. Moreover, E. coli might serve as a suitable estimate for the presence of respective antibiotic resistant strains.202032353007
254850.9972A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. INTRODUCTION: There are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time. METHODS: A population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes. RESULTS: Sheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species. DISCUSSION: The results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level.202336998408
528760.9972Presence of antibiotic-resistant commensal bacteria in samples from agricultural, city, and national park environments evaluated by standard culture and real-time PCR methods. This study examined the presence of antibiotic-resistant commensal bacteria among cattle operations representing areas heavily affected by agriculture, city locations representing areas affected by urban activities and indirectly affected by agriculture, and a national park representing an area not affected by agriculture. A total of 288 soil, fecal floor, and water samples were collected from cattle operations, from the city of Fort Collins, and from Rocky Mountain National Park (RMNP) in Colorado. In addition, a total of 42 new and unused feed, unused bedding, compost, and manure samples were obtained from the cattle operations. Total, tetracycline-resistant, and ceftiofur-resistant bacterial populations were enumerated by both standard culture plating and real-time PCR methods. Only wastewater samples from the cattle operations demonstrated both higher tetracycline-resistant bacterial counts (enumerated by the culture plating method) and tetracycline resistance gene copies (quantified by real-time PCR) compared to water samples collected from non-farm environments. The ceftiofur resistance gene, blaCMY-2, was not detectable in any of the samples, while the tetracycline resistance genes examined in this study, tet(B), tet(C), tet(W), and tet(O), were detected in all types of tested samples, except soil samples from RMNP. Tetracycline resistance gene pools quantified from the tet(O) and tet(W) genes were bigger than those from the tet(B) and tet(C) genes in fecal and water samples. Although only limited resistance genes, instead of a full set, were selected for real-time PCR quantification in this study, our results point to the need for further studies to determine natural and urban impacts on antibiotic resistance.201020921986
369170.9972Antibiotic resistant bacteria in Windermere and two remote upland tarns in the English Lake District. The incidence of antibiotic resistance was determined in over 2000 bacteria which were divided into the following groups: faecal streptococci, coliforms (excluding Escherichia coli), E. coli, Pseudomonas spp. and aquatic bacteria (i.e. bacteria predominant in the lake water which were excluded from the previous four categories). The isolates were obtained from the water of Windermere (English Lake District) and from a sewage effluent which entered the lake. With the exception of the faecal streptococci, the incidence of antibiotic resistance was higher in the bacteria isolated from the lake water than in those from the effluent, and ranked according to groups Pseudomonas spp. greater than E. coli greater than aquatic bacteria greater than coliforms greater than faecal streptococci. The highest incidence of multiple resistance was found among the pseudomonads. When corrected for the relative size of each population the pool of antibiotic resistance in the aquatic bacteria was by far the largest. The incidence of antibiotic resistance in aquatic bacteria isolated from Windermere was, however, lower than in those isolated from two remote upland tarns. This finding may have been due to differences in the species composition of the three sites except that the same results were obtained when only fluorescent pseudomonads were tested. The upland tarns were not totally isolated from man and other animals but did not receive any sewage or other effluents and therefore the results were surprising. Possible explanations include a lack of susceptibility in aquatic bacteria and increased resistance associated with growth in nutrient poor environments.19863722030
311080.9972Microbial community, pathogenic bacteria and high-risk anti-biotic resistance genes at two tropical coastal beaches adjacent to villages in Hainan, China. OBJECTIVE: The aim of the study was to explore the correlation between characteristics of microbial community, pathogenic bacteria and high-risk antibiotic-resistant genes, between coastal beaches and a multi-warm-blooded host, as well as to determine potential species biomarkers for faecal source contamination on tropical coastal beaches in China. MATERIAL AND METHODS: The 'One-Health' approach was used in a microbiological study of beaches and warm-blooded hosts. The microbial.community was analyzed using 16S rRNA gene amplicons and shotgun metagenomics on Illumina NovaSeq. RESULTS: The Chao, Simpson, Shannon, and ACE indices of non-salt beach were greater than those of salt beaches at the genus and OTU levels (P < 0.001). Bacteroidota, Halanaerobiaeota, Cyanobacteria, and Firmicutes were abundant on salt beaches (P<0.01). Human-sourced microorganisms were more abundant on salt beaches, which accounted for 0.57%. Faecalibacterium prausnitzii and Eubacterium hallii were considered as reliable indicators for the contamination of human faeces. High-risk carbapenem-resistant Klebsiella pneumoniae and the genotypes KPC-14 and KPC-24 were observed on salt beaches. Tet(X3)/tet(X4) genes and four types of MCR genes co-occurred on beaches and humans; MCR9.1 accounted for the majority. Tet(X4) found among Cyanobacteria. Although rarely reported at Chinese beaches, pathogens, such as Vibrio vulnificus, Legionella pneumophila, and Helicobacter pylori, were observed. CONCLUSIONS: The low microbial community diversity, however, did not indicate a reduced risk. The transfer of high-risk ARGs to extreme coastal environments should be given sufficient attention.202338153067
554090.9972Antibiotic and Disinfectant Susceptibility Patterns of Bacteria Isolated from Farmed Fish in Kirinyaga County, Kenya. Fish bacterial pathogens cause diseases which result in a considerable economic impact on the aquaculture industry, necessitating the use of antimicrobials for their control. However, intensive and indiscriminate use of antimicrobials has led to increased occurrence of drug resistance in pathogenic bacteria, as well as normal flora. The aim of the current study was to determine the susceptibility patterns of bacteria isolated from fish, with respect to some commonly used antibiotics and disinfectants. Bacteria were isolated between December 2017 and April 2018 from farmed Nile tilapia, African catfish, goldfish, and koi carp in Kirinyaga County, Kenya. Antibiotic and disinfectant susceptibility patterns of 48 isolates belonging to the genera Aeromonas, Proteus, Klebsiella, Citrobacter, Salmonella, Streptococcus, Pseudomonas, Escherichia, Serratia, and Micrococcus were established using the Kirby-Bauer disc diffusion method and agar well diffusion technique, respectively. The antibiotics evaluated included ampicillin, tetracycline, co-trimoxazole, streptomycin, kanamycin, gentamicin, co-trimoxazole, and chloramphenicol, while the disinfectants tested were quaternary ammonium compound, formalin, hydrogen peroxide, sodium hypochlorite, and iodine. All the bacteria except Micrococcus, Escherichia, and Salmonella species showed multiple drug resistance patterns. Streptococcus showed resistance to six antibiotics, while Proteus, Pseudomonas, and Serratia were resistant to five antibiotics. The multiple antibiotic resistance index ranged from 0.1 to 0.8, with Streptococcus spp. having the highest score value. All the organisms were sensitive to gentamicin, while co-trimoxazole and ampicillin showed the highest resistance at 73% (n = 34) and 62% (n = 31), respectively. Most of the disinfectants showed antibacterial activity with varying magnitudes. The isolates were 100% sensitive to hydrogen peroxide and formalin, but were resistant to sodium hypochlorite at recommended user-dilution. The study has shown that some of the bacterial isolates were resistant to common antibiotics and disinfectants; thus, it is recommended to include an antibiogram whenever making any therapeutic decision. The resistant bacteria may transmit resistance genes to other fish bacteria and also to human bacteria, thus making it difficult to treat the resultant disease(s); thus, there is a possibility that these resistant bacteria may be transmitted to humans who consume or handle the carrier fish. It is, therefore, advisable that fish are cooked properly before consumption, so as to kill bacteria that may be present.202032802077
3373100.9972Evidence of Increased Antibiotic Resistance in Phylogenetically-Diverse Aeromonas Isolates from Semi-Intensive Fish Ponds Treated with Antibiotics. The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance.201627965628
5524110.9971Multidrug-resistant Opportunistic and Pathogenic Bacteria Contaminate Algerian Banknotes Currency. Currency is one of the most exchanged items in human communities as it is used daily in exchange for goods and services. It is handled by persons with different hygiene standards and can transit in different environments. Hence, money can constitute a reservoir for different types of human pathogens. This study aimed to evaluate the potential of Algerian banknotes to shelter opportunistic pathogenic and multiresistant bacteria. To that end, 200 circulating notes of four different denominations were collected from various places and analyzed for their bacterial loads and contents. Besides, predominant strains were identified and characterized by biochemical and molecular methods, and their resistance profiles against 34 antibiotics were determined. Our results indicated that 100% of the studied banknotes were contaminated with bacteria. The total bacterial concentrations were relatively high, and different bacterial groups were grown, showing important diversity. In total, 48 predominant strains were identified as belonging to 17 genera. Staphylococcus and Micrococcus were the most prevalent genera, followed by Bacillus, Pseudomonas, and Acinetobacter. Antibiotic susceptibility testing showed that all the isolates harbored resistance to at least two molecules, and worrying resistance levels were observed. These findings prove that Algerian currency harbors opportunistic multiresistant bacteria and could potentially act as a vehicle for the spread of bacterial diseases and as a reservoir for antibiotic resistance genes among the community. Therefore, no cash payment systems should be developed and generalized to minimize cash handling and subsequent potential health risks.202033574877
3633120.9971Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: evidences of resistance dissemination. Antimicrobial resistance of marine heterotrophic bacteria to different antimicrobials agents were evaluated in seawater, dry and wet sands from three marine recreational beaches with different pollution levels. In all studied beaches, the greatest frequencies of resistance were found in relation to penicillin. On Gonzaguinha, the most polluted beach, 72.3% of all isolated strains showed simple resistance, whilst 8.33% had multiple resistance. The values found on Ilha Porchat beach, were 70.8% and 6.9% for simple and multiple resistances, respectively. On Guaraú, the less polluted beach, only 35.3% of isolated strains had simple resistance. Multiple resistance was not observed. While samples from Gonzaguinha and Ilha Porchat beach showed isolated strains resistant to seven and six different antimicrobial agents, respectively, samples from Guaraú beach were resistant only to penicillin and erytromicin. The positive correlations obtained between the degree of seawater contamination and frequency and variability of bacterial resistance indicate that polluted marine recreational waters and sands are sources of resistant bacteria contributing thus, to the dissemination of bacterial resistance.201019904625
3066130.9971Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.202134061267
2888140.9971AMR Threat Perception Assessment of Heterotrophic Bacteria From Shrimp Aquaculture Through Epidemiological Cut off Values. BACKGROUND: Emergence and dissemination of antibiotic resistance is one of the major risks associated with the rampant usage of antibiotics in food-producing animals including aquaculture. OBJECTIVE: To determine Epidemiological Cut-OFF (ECOFF) values of heterotrophic bacterial populations from shrimp culture environments against five different antibiotics. METHODS: In this present study, bacterial samples were isolated from Penaeus vannamei culture environment in different locations of Andhra Pradesh, which is the aquaculture hub of India. The bacterial isolates were assessed for antibiotic resistance towards five antibiotics belonging to different classes (oxytetracycline, chloramphenicol, erythromycin, ciprofloxacin, and co-trimoxazole) by the disc diffusion method. Determination of Epidemiological Cut-OFF (ECOFF) values and analysis by employing normalized resistance interpretation (NRI) was carried out. RESULTS: The most dominant bacterial populations from shrimp culture were Vibrio spp. (pathogenic bacteria) followed by Bacillus spp. (probiotic bacteria). The bacterial isolates showed highest resistance towards oxytetracycline (overall 23.38%) and in location L6 (59.4%) followed by co-trimoxazole (31.1%). ECOFF values calculated by employing NRI showed that the disc diffusion data were distributed in a normalized manner. The maximum ECOFF value was obtained for ciprofloxacin (23.32 mm), while the minimum value was observed for oxytetracycline (9.05 mm). The antibiotic resistant phenotypes showed that the majority of the heterotrophic bacterial isolates (>60%) belonged to the non-wild type phenotype and primarily towards oxytetracycline (90%). CONCLUSION: The presence of non-wild antibiotic-resistant phenotypes of heterotrophic bacterial populations (which include not only pathogenic bacteria but also probiotic bacteria) indicates that shrimp culture ponds may be a reservoir for drug-resistant bacteria and there is a greater risk associated with transmission of resistant genes across bacterial flora. HIGHLIGHTS: NRI analysis of antibiotic disc diffusion data of heterotrophic bacterial populations in shrimp aquaculture environments revealed that majority of them belonged to non-wild type (90%) paticularly to oxytetracycline in comparison to other studied antibiotics (chloramphenicol, erythromycin, ciprofloxacin and co-trimoxazole).202438366611
3625150.9971Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.201222051343
2881160.9971Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits.201526280543
7101170.9971Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment. To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators - including inorganic ions, antibiotics, and antibiotic resistance genes - were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 microg/L. Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes - tet(M), tet(O), tet(Q), and tet(W) - were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period.200617127527
3161180.9971Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. BACKGROUND: Therapeutic and growth-promoting antibiotics are frequently used in broiler production. Indirect evidence indicates that these practices are linked to the proliferation of antimicrobial resistance (AMR), the spread of antibiotic-resistant bacteria from food animals to humans, and the environment, but there is a lack of comprehensive experimental data supporting this. We investigated the effects of growth promotor (bacitracin) and therapeutic (enrofloxacin) antibiotic administration on AMR in broilers for the duration of a production cycle, using a holistic approach that integrated both culture-dependent and culture-independent methods. We specifically focused on pathogen-harboring families (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae). RESULTS: Antibiotic-resistant bacteria and antibiotic resistance genes were ubiquitous in chicken cloaca and litter regardless of antibiotic administration. Environment (cloaca vs. litter) and growth stage were the primary drivers of variation in the microbiomes and resistomes, with increased bacterial diversity and a general decrease in abundance of the pathogen-harboring families with age. Bacitracin-fed groups had higher levels of bacitracin resistance genes and of vancomycin-resistant Enterococcaceae (total Enterococcaceae counts were not higher). Although metagenomic analyses classified 28-76% of the Enterococcaceae as the commensal human pathogens E. faecalis and E. faecium, culture-based analysis suggested that approximately 98% of the vancomycin-resistant Enterococcaceae were avian and not human-associated, suggesting differences in the taxonomic profiles of the resistant and non-resistant strains. Enrofloxacin treatments had varying effects, but generally facilitated increased relative abundance of multidrug-resistant Enterobacteriaceae strains, which were primarily E. coli. Metagenomic approaches revealed a diverse array of Staphylococcus spp., but the opportunistic pathogen S. aureus and methicillin resistance genes were not detected in culture-based or metagenomic analyses. Camphylobacteriaceae were significantly more abundant in the cloacal samples, especially in enrofloxacin-treated chickens, where a metagenome-assembled C. jejuni genome harboring fluoroquinolone and β-lactam resistance genes was identified. CONCLUSIONS: Within a "farm-to-fork, one health" perspective, considering the evidence that bacitracin and enrofloxacin used in poultry production can select for resistance, we recommend their use be regulated. Furthermore, we suggest routine surveillance of ESBL E. coli, vancomycin-resistant E. faecalis and E. faecium, and fluoroquinolone-resistant C. jejuni strains considering their pathogenic nature and capacity to disseminate AMR to the environment. Video Abstract.202134454634
2540190.9971Equine sinusitis aetiology is linked to sinus microbiome by amplicon sequencing. BACKGROUND: Information regarding the microbiome in sinusitis using genetic sequencing is lacking and more-in-depth understanding of the microbiome could improve antimicrobial selection and treatment outcomes for cases of primary sinusitis. OBJECTIVES: To describe sinus microbiota in samples from horses with sinusitis and compare microbiota and the presence of antimicrobial resistance genes between primary, dental-related and other secondary causes of sinusitis. STUDY DESIGN: Retrospective case series. METHODS: Records of equine sinusitis from 2017 to 2021 were reviewed and historical microbial amplicon sequence data were obtained from clinical diagnostic testing of sinus secretions. Following bioinformatic processing of bacterial and fungal sequence data, the sinus microbiota and importance of sinusitis aetiology among other factors were investigated from the perspectives of alpha diversity (e.g., number of operational taxonomic units [OTUs], Hill1 Diversity), beta diversity, and differentially abundant taxa. Quantitative PCR allowed for comparisons of estimated bacterial abundance and detection rate of common antibiotic resistance-associated genes. In a smaller subset, longitudinal analysis was performed to evaluate similarity in samples over time. RESULTS: Of 81 samples analysed from 70 horses, the bacterial microbiome was characterised in 66, and fungal in five. Only sinusitis aetiology was shown to significantly influence microbiome diversity and composition (p < 0.05). Dental-related sinusitis (n = 44) was associated with a significantly higher proportion of obligate anaerobic bacteria, whereas primary sinusitis (n = 12) and other (n = 10) groups were associated with fewer bacteria and higher proportions of facultative anaerobic and aerobic genera. Antimicrobial resistance genes and fungal components were exclusively identified in dental-related sinusitis. MAIN LIMITATIONS: Retrospective nature, incomplete prior antimicrobial administration data. CONCLUSIONS: Molecular characterisation in sinusitis identifies microbial species which may be difficult to isolate via culture, and microbiome profiling can differentiate sinusitis aetiology, which may inform further treatment, including antimicrobial therapy.202336199163