REFLECTED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
753700.9967Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t(1/2)) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.202337536132
753910.9967Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (r(s) = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.202437949160
753520.9966The effects of pig manure application on the spread of tetracycline resistance in bulk and cucumber rhizosphere soils: a greenhouse experiment. It is important to understand the dynamics of tetracycline-resistant bacteria (TRB) and tetracycline resistance genes (TRGs) in bulk and rhizosphere soils for evaluating the spread of TRGs from pig manure to human. In this work, a greenhouse experiment was conducted to investigate the difference in abundance of TRB, tetracycline-resistant Escherichia coli (TRE), tetracycline-resistant Pseudomonas spp. (TRP), and TRGs between bulk and cucumber rhizosphere soils. The application of pig manure resulted in the long-term persistence of TRB, TRE, TRP, and TRGs in bulk soil and rhizosphere of cucumber for at least 65 days. Pig manure application dose was the major driving force in altering the abundances of TRB and TRE, whereas TRP was disturbed mainly by compartment (bulk soil or rhizosphere). Both TRE and the percentage of TRE in bulk and rhizosphere soils increased linearly with an increase in dose of pig manure. The exponential relationships between pig manure dose and TRP along with TRP percentage were also noted. There were significant differences in the relative abundances of TRGs between bulk and cucumber rhizosphere soils, suggesting the use of pig manure exerted a more lasting impact on the spread of TRGs in the rhizosphere than in the bulk soil.201728222270
753630.9966The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Vermi-composting is considered to be a feasible method for reducing tetracycline resistance genes (TRGs) in the sludge. Nevertheless, the way different gut passages of earthworm might affect the fates of TRGs and whether this process is affected by tetracycline (TC) concentrations need to be further investigated. In this study, we examined the effects of TC concentrations on changes in TRGs and bacterial communities in gut passages of earthworm were determined by using quantitative PCR and Illumina high-throughput sequencing. TRGs and intI1 were mainly reduced in the hindgut under the TC concentrations ranging from 0 to 25 mg/kg, while they were enriched under higher TC stress exposure. Consequently, we suggest the TC limitation of 25 mg/kg in the domestic sludge (DS) for vermi-composting. Although the predominant genera were TC sensitive under TC stress, many bacterial hosts harboring multiple TRGs (especially those in the hindgut) should be paid further attention to. In the foregut, five genera with abundant tetracycline-resistant bacteria (TRB) were specialized taxa. Among these genera, Unclassified_Solirubrobacterales and Pirellulaceae were probably related to the digestion processes. Other unclassified taxa related to the TRGs were probably derived from the DS. Five genera with abundant TRB were shared in the gut passages, and three specialized genera in the hindgut. These genera could spread TRGs and intI1 to the environment. These results suggest that vermi-composting is a feasible approach for TRG control in the DS containing TC concentration that does not exceed 25 mg/kg. Fates of TRGs and intI1 widely differ in the gut passages, showing inevitable connections with bacterial communities.201931637618
724640.9966Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
706550.9965Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes.201425087596
692360.9965Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess.201829793114
753870.9964Short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. In this work, a microcosm experiment was conducted to merely mimic thermophilic phase in aerobic composting with pig manures in order to explore: (i) the effect of thermophilic phase in composting on the abundances of tetracycline resistance genes (TRGs); and (ii) the impacts of the treated manures on the abundances of TRGs in soil. It was found that 4days of thermophilic process reduced the abundance of TRGs in pig manures by ∼1 lg unit compared to the samples without treatments, suggesting that other phases in composting may play significant roles in removal of TRGs. Once pig manures with thermophilic treatment were applied to soil, TRGs abundances decreased to the levels in unfertilized soil. With correlation analyses, it was concluded that pig manure derived tetracycline-resistant bacteria (TRB) and nutrients exerted different effects on TRGs abundances in soil. In conclusion, short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. Nutrients enrichment in soil following manuring of treated pig manures, together with a large proportion of gram-positive TRB left in treated pig manures with less risk to TRGs spread, contributed to the controlling effects.201728715744
699980.9964Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer.201728898777
696190.9964Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Using pig manure (PM) compost as a partial substitute for the conventional chemical fertilizers (CFs) is considered an effective approach in sustainable agricultural systems. This study aimed to analyze the impacts of supplementing CF with organic fertilizers (OFs) manufactured using pig manure as a substrate on the spread of tetracycline resistance genes (TRGs) as well as the community structures and diversities of tetracycline-resistant bacteria (TRB) in bulk and cucumber rhizosphere soils. In this study, three organic fertilizers manufactured using the PM as a substrate, namely fresh PM, common OF, and bio-organic fertilizer (BF), were supplemented with a CF. Composted manures combined with a CF did not significantly increase TRB compared with the CF alone, but PM treatment resulted in the long-term survival of TRB in soil. The use of CF+PM also increased the risk of spreading TRGs in soil. As beneficial microorganisms in BF may function as reservoirs for the spread of antibiotic resistance genes, care should be taken when adding them to the OF matrix. The PM treatment significantly altered the community structures and increased the species diversity of TRB, especially in the rhizosphere soil. BF treatment caused insignificant changes in the community structure of TRB compared with CF treatment, yet it reduced the species diversities of TRB in soil. Thus, the partial use of fresh PM as a substitute for CF could increase the risk of spread of TRGs. Apart from plant growth promotion, BF was a promising fertilizer owing to its potential ability to control TRGs.201627152658
6921100.9964Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.202236547725
6911110.9964Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.202438643583
7067120.9963Impact of the antibiotic doxycycline on the D. magna reproduction, associated microbiome and antibiotic resistance genes in treated wastewater conditions. Wastewater Treatment Plant (WWTP) effluents are important sources of antibiotics, antibiotic resistance genes (ARGs) and resistant bacteria that threaten aquatic biota and human heath. Antibiotic effects on host-associated microbiomes, spread of ARGs and the consequences for host health are still poorly described. This study investigated changes of the Daphnia magna associated microbiome exposed to the recalcitrant antibiotic doxycycline under artificial reconstituted lab water media (lab water) and treated wastewater media. D. magna individual juveniles were exposed for 10 days to treated wastewater with and without doxycycline, and similarly in lab water. We analysed 16 S rRNA gene sequences to assess changes in community structure, monitored Daphnia offspring production and quantified ARGs abundances by qPCR from both Daphnia and water (before and after the exposure). Results showed that doxycycline and media (lab water or wastewater) had a significant effect modulating Daphnia-associated microbiome composition and one of the most discriminant taxa was Enterococcus spp. Moreover, in lab water, doxycycline reduced the presence of Limnohabitans sp., which are dominant bacteria of the D. magna-associated microbiome and impaired Daphnia reproduction. Contrarily, treated wastewater increased diversity and richness of Daphnia-associated microbiome and promoted fecundity. In addition, the detected ARG genes in both lab water and treated wastewater medium included the qnrS1, sul1, and bla(TEM,) and the integron-related intI1 gene. The treated wastewater contained about 10 times more ARGs than lab water alone. Furthermore, there was an increase of sul1 in Daphnia cultured in treated wastewater compared to lab water. In addition, there were signs of a higher biodegradation of doxycycline by microbiomes of treated wastewater in comparison to lab water. Thus, results suggest that Daphnia-associated microbiomes are influenced by their environment, and that bacterial communities present in treated wastewater are better suited to cope with the effects of antibiotics.202337442322
6924130.9963Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.202337928655
7064140.9963Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. As agriculture industrializes, concentrated animal feeding operations (CAFOs) are becoming more common. Feces from CAFOs is often used as fertilizer on fields. However, little is known about the effects manure has on the soil microbiome, which is an important aspect of soil health and fertility. In addition, due to the subtherapeutic levels of antibiotics necessary to keep the animals healthy, CAFO manure has elevated levels of antibiotic resistant bacteria. Using 16s rRNA high-throughput sequencing and qPCR, this study sought to determine the impact of swine CAFO manure application on both the soil microbiome and abundance of select antibiotic resistance genes (ARGs) and mobile element genes (erm(B), erm(C), sul1, str(B), intI1, IncW repA) in agricultural soil over the fall and spring seasons. We found the manure community to be distinct from the soil community, with a majority of bacteria belonging to Bacteroidetes and Firmicutes. The soil samples had more diverse communities dominated by Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia, and unclassified bacteria. We observed significant differences in the soil microbiome between all time points, except between the spring samples. However, by tracking manure associated taxa, we found the addition of the manure microbiome to be a minor driver of the shift. Of the measured genes, manure application only significantly increased the abundance of erm(B) and erm(C) which remained elevated in the spring. These results suggest bacteria in the manure do not survive well in soil and that ARG dynamics in soil following manure application vary by resistance gene.201931425534
8032150.9963Enrichment of the Antibiotic Resistance Gene tet(L) in an Alkaline Soil Fertilized With Plant Derived Organic Manure. Fifteen antibiotic resistance genes (ARGs) and intI1, a gene involved in horizontal gene transfer (HGT) of ARGs, were quantified in three different soil samples from a 22 year old field experiment that had received inorganic fertilizer (NPK), organic manure (OM; a mixture of wheat straw, soybean oil cake and cotton cake), and control fields that had received no fertilizer and manure (CK). Tet(L) was the most abundant ARG in OM, which also contained considerable levels of intI1. Molecular analysis of yearly collected archived soils over the past 22 years showed that tet(L) and intI1 were higher in OM soils than in NPK soils. The relative abundance of tet(L) was essentially constant during these years, while the level of intI1 in OM soils decreased over time. The main genotype of tet(L) was the same in archived and in fresh soil, OM, and irrigation water. Phylogenetic analysis of the 16S rRNA genes of tetracycline-resistant bacteria (TRB) isolates indicated that the Firmucutes carrying tet(L) in OM were similar to those in the OM soil, suggesting that OM transferred TRB into the OM soils where they survived. Almost all of the TRB isolated from OM carried tet(L) and belonged to the Firmicutes. Survival of bacteria from the organic manure that carried tet(L) may be the cause of the increased level of tet(L) in OM soil.201829904377
6997160.9963Linkage of antibiotic resistance genes, associated bacteria communities and metabolites in the wheat rhizosphere from chlorpyrifos-contaminated soil. Rhizosphere is a crucial site for the proliferation of antibiotic resistance genes (ARGs) in agricultural soil. Pesticide contamination is ubiquitous in soil, such as chlorpyrifos as one of the most commonly used pesticides. However, limited knowledge is reported about ARGs profiles changes and the driving mechanism of ARGs prevalence in rhizosphere soil after adding pesticide. In this study, irrespective of chlorpyrifos presence, the abundances of ARGs (tetM, tetO, tetQ, tetW, tetX, sul1 and sul2) and intI1 in rhizosphere soil of wheat were obviously higher than those in bulk soil. 20.0 mg·kg(-1) chlorpyrifos significantly increased the abundance of total ARGs and intI1 in bulk soil, respectively, at day 50 and 100, but not in rhizosphere soil. Rhizosphere influence on ARGs was far greater than chlorpyrifos. ARGs and intI1 abundances were higher at day 50 than ones at day 100. C/N ratio and NO(3)(-)-N content, which were affected by rhizosphere and cultivation time, significantly explained the increased ARGs. Compared to bulk soil, rhizosphere shifted host bacteria of tetracycline resistance genes (TRGs), intI1 at genus level, and host bacteria of sul1, sul2 at phylum level. Rhizosphere simplified the linkage of ARGs, host bacteria and metabolites. Bacterial communities played important roles in the variation of ARGs and intI1, and the difference in the distribution of potential hosts between bulk and rhizosphere soil was related to metabolites abundance and composition. These results provide valuable information for understanding the linkage of ARGs, associated bacteria communities and metabolites in the wheat rhizosphere soil.202032615437
7000170.9963Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution.202134004530
6928180.9963Assessing the effects of tylosin fermentation dregs as soil amendment on macrolide antibiotic resistance genes and microbial communities: Incubation study. Tylosin fermentation dregs (TFDs) are biosolid waste of antibiotics tylosin production process which contain nutritious components and may be recycled as soil amendments. However, the specific ecological safety of TFDs from the perspective of bacterial resistance in soil microenvironment is not fully explored. In the present study, a series of replicated lab-scale work were performed using the simulated fertilization to gain insight into the potential environmental effects and risks of macrolide antibiotic resistance genes (ARGs) and the soil microbial communities composition via quantitative PCR and 16S rRNA sequencing following the TFDs land application as the soil amendments. The results showed that bio-processes might play an important role in the decomposition of tylosin which degraded above 90% after 20 days in soil. The application of TFDs might induce the development of antibiotic-resistant bacteria, change soil environment and reduce the microbial diversity. Though the abundances of macrolide ARGs exhibited a decreasing trend following the tylosin degradation, other components in TFDs may have a lasting impact on both macrolide ARGs abundance and soil bacterial communities. Thus, this study pointed out the fate of TFDs on soil ecological environment when directly applying into soil, and provide valuable scientific basis for TFDs management.202032648501
8114190.9963Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils. Reductive soil disinfestation (RSD) is an emerging technique that ameliorates soil degradation, but its effects against antibiotic resistance genes (ARGs) were unclear. Here, we examined soil properties, ARG types and numbers, and ARG profiles, and bacterial community compositions following 4 soil treatments: control; straw addition (SA); water flooding (WF); and RSD, both straw addition and water flooding. The results showed that the numbers of ARG types and subtypes decreased by 10.8% and 21.1%, respectively, after RSD, and the numbers of ARGs decreased by 18.6%. The attenuated multidrug, beta-lactam, macrolide, and phenicol resistance genes in the RSD soil corresponded to a decreased relative abundance of ARG subtypes (i.e., adeF, mdtM, TypeB_NfxB, mecA, nalC, OXA-60, and cmlA4). Taxa in phyla Proteobacteria, Actinobacteria, and Deinococcus-Thermus were the main hosts for dominant ARG subtypes and were inhibited by RSD. The selected bacterial genera and soil properties explained 83.4% of the variance in ARG composition, suggesting that the improved soil properties and the reduced potential ARG hosts produced by the interactions of straw addition and water flooding are likely responsible for ARG attenuation by RSD. Therefore, RSD has the potential to mitigate ARG pollution in soils.202134293692