RECOMBINED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
299700.9682Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.202033584554
57510.9660Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
842420.9658Postseptational chromosome partitioning in bacteria. Mutations in the spoIIIE gene prevent proper partitioning of one chromosome into the developing prespore during sporulation but have no overt effect on partitioning in vegetatively dividing cells. However, the expression of spoIIIE in vegetative cells and the occurrence of genes closely related to spoIIIE in a range of nonsporulating eubacteria suggested a more general function for the protein. Here we show that SpoIIIE protein is needed for optimal chromosome partitioning in vegetative cells of Bacillus subtilis when the normal tight coordination between septation and nucleoid partitioning is perturbed or when septum positioning is altered. A functional SpoIIIE protein allows cells to recover from a state in which their chromosome has been trapped by a closing septum. By analogy to its function during sporulation, we suggest that SpoIIIE facilitates partitioning by actively translocating the chromosome out of the septum. In addition to enhancing the fidelity of nucleoid partitioning, SpoIIIE also seems to be required for maximal resistance to antibiotics that interfere with DNA metabolism. The results have important implications for our understanding of the functions of genes involved in the primary partitioning machinery in bacteria and of how septum placement is controlled.19957567988
53030.9655Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
33340.9655Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product.1978360222
33850.9653Repair by genetic recombination in bacteria: overview. DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by X-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, the newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into high-molecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB- AND RECC but is greatly slowed in recF- mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultra-violet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur. The R1 restriction endonuclease from E. COli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli.19751103833
34660.9649Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.200415126486
46070.9646Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.200111343129
36980.9645A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096
41790.9645Site-specific integration of genes into hot spots for recombination flanking aadA in Tn21 transposons. Tn21-related transposons are widespread among bacteria and carry various resistance determinants at preferential sites, hs1 and hs2. In an in vivo integrative recombination assay it was demonstrated that these hot spots direct the integration of aminoglycoside resistance genes like aadB from Klebsiella pneumoniae and aacAI from Serratia marcescens, in a recA- background. The maximum required recognition sequence which must be present in both the donor and recipient plasmids is 5' CTAAAACAAAGTTA 3' (hs2). The double-site-specific recombination occurred with a frequency of 10(-5)-10(-6). The resulting structures include not only replicon fusion products but also more complex structures carrying two copies of the donor plasmid or simply the donor gene flanked by hs elements. hs1 and hs2 are thought to act as recognition sites for a transacting site-specific recombinase. By the use of Tn21 deletion derivatives, it has been shown that the recombinase is not encoded by Tn21. This new integrative recombination system is involved in the acquisition of new genes by Tn21-related transposons and their spread among bacterial populations.19911654505
9238100.9645Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches.200212555790
4110.9644Bacteria deplete deoxynucleotides to defend against bacteriophage infection. DNA viruses and retroviruses consume large quantities of deoxynucleotides (dNTPs) when replicating. The human antiviral factor SAMHD1 takes advantage of this vulnerability in the viral lifecycle, and inhibits viral replication by degrading dNTPs into their constituent deoxynucleosides and inorganic phosphate. Here, we report that bacteria use a similar strategy to defend against bacteriophage infection. We identify a family of defensive bacterial deoxycytidine triphosphate (dCTP) deaminase proteins that convert dCTP into deoxyuracil nucleotides in response to phage infection. We also identify a family of phage resistance genes that encode deoxyguanosine triphosphatase (dGTPase) enzymes, which degrade dGTP into phosphate-free deoxyguanosine and are distant homologues of human SAMHD1. Our results suggest that bacterial defensive proteins deplete specific deoxynucleotides (either dCTP or dGTP) from the nucleotide pool during phage infection, thus starving the phage of an essential DNA building block and halting its replication. Our study shows that manipulation of the dNTP pool is a potent antiviral strategy shared by both prokaryotes and eukaryotes.202235817891
347120.9643A novel plasmid gene involved in bacteriophage PRD1 infection and conjugative host-range. PRD1 infects bacteria carrying IncN plasmids by binding to their conjugative pili. Mutations in a plasmid locus kikA close to the pilus region result in PRD1 resistance and reduced conjugation proficiency to Klebsiella but not to Escherichia coli. One of the two genes of kikA is sufficient to restore both normal phenotypes. PRD1 binds to cells carrying the mutant plasmid but fails to inject its genome.19968812786
495130.9642Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Resistance to antiseptics and disinfectants in Staphylococcus aureus, encoded by the qacC/qacD gene family, is associated with genetically dissimilar small, nontransmissible (pSK89) and large conjugative (pSK41) plasmids. The qacC and qacD genes were analysed in detail through deletion mapping and nucleotide sequence analysis, and shown to encode the same polypeptide, predicted to be 107 aa in size. Direct repeat elements flank the qacD gene, elements which also flank the qacC gene in truncated forms. These elements contain palA sequences, regions of DNA required for replication of some plasmids in S. aureus. The qacC gene is predicted to have evolved from the qacD gene, and in the process to have become reliant on new promoter sequences for its expression. The entire sequence of the 2.4-kb plasmid pSK89 (which contains qacC) was determined, and is compared with other plasmids from Gram + bacteria.19911840534
8427140.9642Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. RESULTS: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. CONCLUSION: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.200818570673
349150.9642Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor.19902172217
290160.9642Utility of the clostridial site-specific recombinase TnpX to clone toxic-product-encoding genes and selectively remove genomic DNA fragments. TnpX is a site-specific recombinase responsible for the excision and insertion of the transposons Tn4451 and Tn4453 in Clostridium perfringens and Clostridium difficile, respectively. Here, we exploit phenotypic features of TnpX to facilitate genetic mutagenesis and complementation studies. Genetic manipulation of bacteria often relies on the use of antibiotic resistance genes; however, a limited number are available for use in the clostridia. The ability of TnpX to recognize and excise specific DNA fragments was exploited here as the basis of an antibiotic resistance marker recycling system, specifically to remove antibiotic resistance genes from plasmids in Escherichia coli and from marked chromosomal C. perfringens mutants. This methodology enabled the construction of a C. perfringens plc virR double mutant by allowing the removal and subsequent reuse of the same resistance gene to construct a second mutation. Genetic complementation can be challenging when the gene of interest encodes a product toxic to E. coli. We show that TnpX represses expression from its own promoter, PattCI, which can be exploited to facilitate the cloning of recalcitrant genes in E. coli for subsequent expression in the heterologous host C. perfringens. Importantly, this technology expands the repertoire of tools available for the genetic manipulation of the clostridia.201424682304
8422170.9641Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.202032432548
3003180.9639IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions.201627303727
570190.9639Genetic instability and methylation tolerance in colon cancer. Microsatellite instability was first identified in colon cancer and later shown to be due to mutations in genes responsible for correction of DNA mismatches. Several human mismatch correction genes that are homologous to those of yeast and bacteria have been identified and are mutated in families affected by the hereditary non-polyposis colorectal carcinoma (HNPCC) syndrome. Similar alterations have been also found in some sporadic colorectal cancers. The mismatch repair pathway corrects DNA replication errors and repair-defective colorectal carcinoma cell lines exhibit a generalized mutator phenotype. An additional consequence of mismatch repair defects is cellular resistance, or tolerance, to certain DNA damaging agents.19968967715