# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6787 | 0 | 0.9837 | Impact of chlorine disinfection on intracellular and extracellular antimicrobial resistance genes in wastewater treatment and water reclamation. Wastewater treatment plants and water reclamation facilities are reservoirs of antimicrobial resistance genes (ARGs). These ARGs are not limited solely to intracellular DNA (inARGs) but include extracellular DNA (exARGs) present in wastewater. The release of exARGs from cells can be exacerbated by treatment processes, including chlorine disinfection, which disrupts bacterial cells. Given the potential for exARGs to drive horizontal gene transfer and contribute to the proliferation of antimicrobial resistance, it is imperative to recognize these fractions as emerging environmental pollutants. In this study, we conducted a comprehensive year-long assessment of both inARGs and exARGs, further differentiating between dissolved exARGs (Dis_exARGs) and exARGs adsorbed onto particulate matter (Ads_exARGs), within a full-scale wastewater treatment and water reclamation facility. The results revealed that Ads_exARGs comprised up to 30 % of the total ARGs in raw sewage with high biomass content. Generally, treatments at low and high doses of chlorine increased the abundance of Dis_exARGs and Ads_exARGs. The fate of ARG levels that varied depending on the type of ARGs suggested variations in the susceptibility of the host bacteria to chlorination. Moreover, co-occurrence of several potential opportunistic pathogenic bacteria and ARGs were observed. Therefore, we propose higher doses of chlorination as a prerequisite for the effective removal of inARGs and exARGs. | 2024 | 39067603 |
| 7934 | 1 | 0.9836 | Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security. | 2019 | 31085389 |
| 7994 | 2 | 0.9831 | Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process. The antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in Wastewater treatment plants (WWTPs) have attracted increasing attention. In this study, the abundance of ARB and resistance genes tet32 and defA1 were investigated using high-throughput sequencing and high-throughput qPCR in water samples collected from the inlet of the biological treatment pool and outlet of Beilun Yandong WWTP in Ningbo, China. The result shows there was a high level of ARGs in the water of both the inlets and outlets in 2017 and 2018, whereas no ARGs were detected after adding a new baffled bioreactor (BBR) water treatment process in 2019. The BBR process uses Bacillus subtilis, B. thuringiensis, B. megaterium, B. licheniformis and B. amyloliquefaciens to effectively eliminate the ARGs in wastewater. Notably, this process did not significantly change the bacterial community structure of outlet water samples. The findings demonstrate an effective new method for removing ARGs from sewage. | 2022 | 34532751 |
| 7856 | 3 | 0.9831 | Boosting Low-Dose Ferrate(VI) Activation by Layered FeOCl for the Efficient Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes via Enhancing Fe(IV)/Fe(V) Generation. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquatic environments pose threats to ecosystem safety and human health, which could not be efficiently removed by conventional disinfection techniques. Herein, layered FeOCl with coordinatively unsaturated Fe sites were fabricated and used to activate Fe(VI) for the efficient ARB/ARG removal in the present study. We found that highly reactive Fe(IV)/Fe(V) intermediates were generated in the FeOCl/Fe(VI) system, rapidly disinfecting 1 × 10(7) CFU mL(-1) ARB to below the limit of detection within only 6 min. Via the combination of in situ characterization and theoretical calculations, we revealed that Fe(VI) was preferentially adsorbed onto Fe sites on the (010) plane of FeOCl and subsequently activated to produce reactive Fe(IV)/Fe(V) through direct electron transfer. Meanwhile, O(2)(•-) generated from O(2) activation on the FeOCl surface enhanced Fe(VI) conversion to Fe(IV)/Fe(V). During the disinfection process, intracellular/extracellular ARGs and DNA bases were simultaneously degraded, inhibiting the potential horizontal gene transfer process. The FeOCl/Fe(VI) system could effectively disinfect ARB under complex water matrices and in real water samples including tap water, lake water, and groundwater. When integrated into a continuous-flow reactor, the FeOCl/Fe(VI) system with excellent stability successively disinfected ARB. Overall, the FeOCl/Fe(VI) system showed great promise for eliminating ARB/ARGs from water. | 2025 | 40739812 |
| 8546 | 4 | 0.9830 | A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Emerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment. Constructed wetlands (CWs) have proven effective in removing many EOCs, including different antibiotics, before discharge of treated wastewater into the environment. Wastewater treatment systems that couple conventional treatment plants with constructed and natural wetlands offer a strategy to remove EOCs and reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) far more efficiently than conventional treatment alone. This review presents as overview of the current knowledge on the efficiency of different wetland systems in reducing EOCs and antibiotic resistance. | 2020 | 32247686 |
| 7621 | 5 | 0.9830 | Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process. | 2025 | 40398032 |
| 7935 | 6 | 0.9829 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 7933 | 7 | 0.9828 | Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Low-pressure membrane filtration was investigated at pilot scale with regard to its removal of antimicrobial resistance genes (ARGs) in conventional secondary treated wastewater plant effluents. While operating microfiltration (MF) and ultrafiltration (UF) membranes, key operational parameters for antimicrobial resistance (AMR) studies and key factors influencing AMR removal efficiencies of low-pressure membrane filtration processes were examined. The main factor for AMR removal was the pore size of the membrane. The formation of the fouling layer on capillary membranes had only a small additive effect on intra- and extrachromosomal ARG removal and a significant additive effect on mobile ARG removal. Using feeds with different ARGs abundances revealed that higher ARG abundance in the feed resulted in higher ARG abundance in the filtrate. Live-Dead cell counting in UF filtrate showed intact bacteria breaking through the UF membrane. Strong correlations between 16S rRNA genes (as surrogate for bacteria quantification) and the sul1 gene in UF filtrate indicated ARBs likely breaking through UF membranes. | 2022 | 35598662 |
| 7134 | 8 | 0.9827 | Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. Treated wastewater irrigation (TWW) releases antibiotics and antibiotic resistance genes (ARGs) into the environment and might thus promote the dissemination of antibiotic resistance in groundwater (GW). We hypothesized that TWW irrigation increases ARG abundance in GW through two potential mechanisms: the contamination of GW with resistant bacteria and the accumulation of antibiotics in GW. To test this, the GW below a real-scale TWW-irrigated field was sampled for six months. Sampling took place before, during and after high-intensity TWW irrigation. Samples were analysed with 16S rRNA amplicon sequencing, qPCR of six ARGs and the class 1 integron-integrase gene intI1, while liquid chromatography tandem mass spectrometry was performed to detect antibiotic and pharmaceutical residues. Absolute abundance of 16S rRNA in GW decreased rather than increased during long-term irrigation. Also, the relative abundance of TWW-related bacteria did not increase in GW during long-term irrigation. In contrast, long-term TWW irrigation increased the relative abundance of sul1 and intI1 in the GW microbiome. Furthermore, GW contained elevated concentrations of sulfonamide antibiotics, especially sulfamethoxazole, to which sul1 confers resistance. Total sulfonamide concentrations in GW correlated with sul1 relative abundance. Consequently, TWW irrigation promoted sul1 and intI1 dissemination in the GW microbiome, most likely due to the accumulation of drug residues. | 2022 | 34555761 |
| 8105 | 9 | 0.9827 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 7850 | 10 | 0.9826 | Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H(2)O(2)) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards. | 2021 | 33819660 |
| 6395 | 11 | 0.9826 | Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies. | 2023 | 36933744 |
| 8545 | 12 | 0.9825 | Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs. | 2021 | 33735726 |
| 8008 | 13 | 0.9824 | Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions. | 2016 | 27384166 |
| 8007 | 14 | 0.9824 | Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination. | 2022 | 35158247 |
| 7827 | 15 | 0.9824 | Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are of great concern due to their potential risk to human health. The effluents from wastewater treatment plants and livestock production are major sources of ARB and ARGs. Chlorination, UV irradiation, and ozone disinfection cannot remove ARGs completely. In this study, the potential of electrochemical oxidation and electro-Fenton processes as alternative treatment technologies for inactivation of ARB and ARGs in both intracellular and extracellular forms was evaluated. Results showed that the electrochemical oxidation process was effective for the inactivation of selected ARB but not for the removal of intracellular ARGs or extracellular ARGs. The electro-Fenton process was more effective for the removal of both intracellular and extracellular ARGs. The removal efficiency after 120 min of electro-Fenton treatment under 21.42 mA/cm(2) was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 logs for extracellular tetA, and 4.8 logs for extracellular ampC, respectively in the presence of 1.0 mmol/L Fe(2+). It is suggested that electrochemical oxidation is an effective disinfection method for ARB and the electro-Fenton process is a promising technology for the removal of both intracellular and extracellular ARGs in wastewater. | 2020 | 32701499 |
| 7446 | 16 | 0.9824 | Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater. | 2022 | 34902759 |
| 8000 | 17 | 0.9823 | Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process. The fate of antibiotic resistance genes (ARGs) in reclaimed water reuse system with integrated membrane process (IMR) was firstly investigated. Results indicated that ARGs, class 1 integrons (intI1) and 16S rRNA gene could be reduced efficiently in the IMR system. The absolute abundance of all detected ARGs in the reuse water after reverse osmosis (RO) filtration of the IMR system was 4.03 × 10(4) copies/mL, which was about 2-3 orders of magnitude lower than that in the raw influent of the wastewater treatment plants (WWTPs). Maximum removal efficiency of the detected genes was up to 3.8 log removal values. Daily flux of the summation of all selected ARGs in the IMR system decreased sharply to (1.02 ± 1.37) ×10(14) copies/day, which was 1-3 orders of magnitude lower than that in the activated sludge system (CAS) system. The strong clustering based on ordination analysis separated the reuse water from other water samples in the WWTPs. Network analysis revealed the existence of potential multi-antibiotic resistant bacteria. The potential multi-antibiotic resistant bacteria, including Clostridium and Defluviicoccus, could be removed effectively by microfiltration and RO filtration. These findings suggested that the IMR system was efficient to remove ARGs and potential multi-antibiotic resistant bacteria in the wastewater reclamation system. | 2020 | 31446351 |
| 7858 | 18 | 0.9823 | Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment. | 2018 | 29984583 |
| 7900 | 19 | 0.9823 | Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics. | 2025 | 39986428 |