# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2241 | 0 | 0.9876 | Standard and real-time multiplex PCR methods for detection of trimethoprim resistance dfr genes in large collections of bacteria. Two multiplex PCR (mPCR) methods were developed to screen large collections of trimethoprim-resistant Escherichia coli isolates for the most prevalent resistance determinants. Five common integron-carried genes (dfrA1, dfrA5, dfrA7, dfrA12 and dfrA17) were selected as PCR targets. Primers and conditions for standard mPCRs and real-time mPCRs were selected and tested. Two protocols using essentially the same primer pairs were established. The standard mPCR protocol also included an internal control targeting the E. coli 16S rRNA gene. Both protocols proved to be sensitive and specific for detection of the five selected genes. Screening of three different collections of clinical urinary and blood isolates (n = 368) with the two multiplex methods revealed that the five dfr genes accounted for 75-86% of trimethoprim resistance. The standard mPCR is useful and accessible for most laboratories, while the real-time mPCR requires additional equipment and expensive reagents, but is very convenient for high-throughput screening of large collections of bacterial isolates. | 2007 | 17725650 |
| 1474 | 1 | 0.9876 | Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings. | 2017 | 28966495 |
| 1483 | 2 | 0.9875 | Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures. The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections. | 2018 | 29899000 |
| 2224 | 3 | 0.9874 | Multiplexed Signal Ion Emission Reactive Release Amplification (SIERRA) Assay for the Culture-Free Detection of Gram-Negative and Gram-Positive Bacteria and Antimicrobial Resistance Genes. The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 10(4) bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼10(5) bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to β-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h). | 2021 | 33819029 |
| 5798 | 4 | 0.9874 | Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis. | 2007 | 17913394 |
| 1485 | 5 | 0.9874 | Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures. The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures. | 2016 | 26904669 |
| 2236 | 6 | 0.9874 | Development of a Multiplex PCR Platform for the Rapid Detection of Bacteria, Antibiotic Resistance, and Candida in Human Blood Samples. The diagnosis of bloodstream infections (BSIs) still relies on blood culture (BC), but low turnaround times may hinder the early initiation of an appropriate antimicrobial therapy, thus increasing the risk of infection-related death. We describe a direct and rapid multiplex PCR-based assay capable of detecting and identifying 16 bacterial and four Candida species, as well as three antibiotic-resistance determinants, in uncultured samples. Using whole-blood samples spiked with microorganisms at low densities, we found that the MicrobScan assay had a mean limit of detection of 15.1 ± 3.3 CFU of bacteria/Candida per ml of blood. When applied to positive BC samples, the assay allowed the sensitive and specific detection of BSI pathogens, including bla(KPC)-, mecA-, or vanA/vanB-positive bacteria. We evaluated the assay using prospectively collected blood samples from patients with suspected BSI. The sensitivity and specificity were 86.4 and 97.0%, respectively, among patients with positive BCs for the microorganisms targeted by the assay or patients fulfilling the criteria for infection. The mean times to positive or negative assay results were 5.3 ± 0.2 and 5.1 ± 0.1 h, respectively. Fifteen of 20 patients with MicrobScan assay-positive/BC-negative samples were receiving antimicrobial therapy. In conclusion, the MicrobScan assay is well suited to complement current diagnostic methods for BSIs. | 2019 | 31799215 |
| 5827 | 7 | 0.9873 | Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI. | 2021 | 34528911 |
| 1486 | 8 | 0.9873 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 1484 | 9 | 0.9873 | Use of a commercial PCR-based line blot method for identification of bacterial pathogens and the mecA and van genes from BacTAlert blood culture bottles. In this study, the PCR-based DNA strip assay GenoType BC for the identification of bacteria and the resistance genes mecA, vanA, vanB, vanC1, and vanC2/3 directly from positive BacTAlert blood culture bottles was evaluated in a multicenter study. Of a total of 511 positive blood cultures, correct identification percentages for Gram-negative bacteria, Gram-positive bacteria, and the mecA gene were 96.1%, 89.9%, and 92.9%, respectively. Results were available 4 h after growth detection. | 2012 | 22075585 |
| 5829 | 10 | 0.9873 | Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens. | 2021 | 33970612 |
| 1473 | 11 | 0.9872 | Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics. | 2020 | 31790779 |
| 5074 | 12 | 0.9871 | Cas14VIDet: A visual instant method free from PAM restriction for antibiotic resistance bacteria detection. A personalized treatment strategy that selects sensitive antibiotics based on Helicobacter pylori (H. pylori) resistance genes is currently the most effective approach to address the challenge of H. pylori eradication. However, the widespread adoption of this strategy is hindered by the long processing times and high costs associated with traditional resistance gene detection methods. In this study, we combined ultra-fast PCR with CRISPR/Cas14 into a single reaction system, establishing a rapid, one-pot visual platform named Cas14VIDet (Cas14-based Visual Instant Detection) for detecting H. pylori resistance genes. Cas14VIDet does not require a PAM sequence and excels in identifying single nucleotide polymorphisms, with the detection sensitivity approaching the level of a single bacterial colony (10(0) CFU/mL). The entire detection process can be completed within 10 min, and results are directly observable with the naked eye. We validated Cas14VIDet by testing 50 clinical samples and compared it with Sanger sequencing. The results showed that Cas14VIDet achieved 100% sensitivity, 100% specificity, and 100% accuracy in detecting H. pylori resistance genes to levofloxacin. Therefore, we believe this method holds great potential for rapid detection of H. pylori resistance, potentially supporting personalized treatment of H. pylori infections in the future. | 2025 | 39527901 |
| 2475 | 13 | 0.9871 | Examination of single and multiple mutations involved in resistance to quinolones in Staphylococcus aureus by a combination of PCR and denaturing high-performance liquid chromatography (DHPLC). Detection of DNA sequence variation is fundamental to the identification of the genomic basis of phenotypic variability. Denaturing high-performance liquid chromatography (DHPLC) is a novel technique that has been used to detect mutations in human DNA. We report on the first study to use this technique as a tool to detect mutations in genes encoding antibiotic resistance in bacteria. Three methicillin-sensitive and three methicillin-resistant clinical Staphylococcus aureus isolates, susceptible to ciprofloxacin (MIC | 2002 | 12407120 |
| 5380 | 14 | 0.9871 | In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gathered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus faecium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887, Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium. Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro screening of a drug library is a promising approach to identify effective drugs for specific bacteria. | 2022 | 35326755 |
| 5094 | 15 | 0.9871 | A duplex one-step recombinase aided PCR assay for the rapid and sensitive detection of the isoniazid resistance genes katG and inhA in Mycobacterium tuberculosis. OBJECTIVES: Drug resistance in tuberculosis seriously affects the eradication of tuberculosis, and isoniazid resistance is the second most commonly observed drug resistance in patients with tuberculosis. Timely and accurate detection of isoniazid resistance is critical to the treatment of tuberculosis. METHODS: A duplex one-step recombinase-aided PCR (DO-RAP) assay was developed for the rapid and sensitive detection of the katG Ser315Thr and inhA-15 (C-T) mutations in Mycobacterium tuberculosis, which are the most common isoniazid-resistant mutations. Quantitative recombinant plasmids were used to evaluate the sensitivity of DO-RAP, and 91 Mycobacterium tuberculosis strains with different genotypes, as well as 5 common respiratory tract bacteria, were used to evaluate the specificity of DO-RAP. A total of 78 sputum specimens were simultaneously detected using DO-RAP, quantitative PCR (qPCR) and sanger sequencing of nested PCR products. Sanger sequencing results were used as the standard to verify the clinical performance of DO-RAP. RESULTS: The reaction time of DO-RAP was less than 1 h. The sensitivity of DO-RAP was 2 copies/reaction, which was 10 times higher than qPCR. The sensitivity of DO-RAP for detecting heterogenous resistance was 5%. There was no cross-reactivity between the isoniazid wild-type gene, drug-resistant mutant genes, and other common respiratory tract bacteria. Compared with Sanger sequencing, the sensitivity, specificity, PPV and NPV of DO-RAP were all 100%. There were 7 specimens with gray zone or negative qPCR results but positive DO-RAP test results. CONCLUSION: The DO-RAP can be adopted in ordinary qPCR equipment for the rapid, highly sensitive and specific detection of the isoniazid resistance genes of Mycobacterium tuberculosis. | 2025 | 40182291 |
| 5084 | 16 | 0.9870 | Cloth-based hybridization array system for the identification of antibiotic resistance genes in Salmonella. A simple macroarray system based on the use of polyester cloth as the solid phase for DNA hybridization has been developed for the identification and characterization of bacteria on the basis of the presence of various virulence and toxin genes. In this approach, a multiplex polymerase chain reaction (PCR) incorporating digoxigenin-dUTP is used to simultaneously amplify different marker genes, with subsequent rapid detection of the amplicons by hybridization with an array of probes immobilized on polyester cloth and immunoenzymatic assay of the bound label. As an example of the applicability of this cloth-based hybridization array system (CHAS) in the characterization of foodborne pathogens, a method has been developed enabling the detection of antibiotic resistance and other marker genes associated with the multidrug-resistant food pathogen Salmonella enterica subsp. enterica serotype Typhimurium DT104. The CHAS is a simple, cost-effective tool for the simultaneous detection of amplicons generated in a multiplex PCR, and the concept is broadly applicable to the identification of key pathogen-specific marker genes in bacterial isolates. | 2007 | 18363231 |
| 1477 | 17 | 0.9870 | Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial. | 2023 | 37227281 |
| 2233 | 18 | 0.9869 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 5086 | 19 | 0.9869 | Detection of genetically modified microorganisms in soil using the most-probable-number method with multiplex PCR and DNA dot blot. The principal objective of this study was to detect genetically modified microorganisms (GMMs) that might be accidentally released into the environment from laboratories. Two methods [plate counting and most-probable-number (MPN)] coupled with either multiplex PCR or DNA dot blots were compared using genetically modified Escherichia coli, Pseudomonas putida, and Acinetobacter oleivorans harboring an antibiotic-resistance gene with additional gfp and lacZ genes as markers. Alignments of sequences collected from databases using the Perl scripting language (Perl API) and from denaturing gradient gel electrophoresis analysis revealed that the gfp, lacZ and antibiotic-resistance genes (kanamycin, tetracycline, and ampicillin) in GMMs differed from the counterpart genes in many sequenced genomes and in soil DNA. Thus, specific multiplex PCR primer sets for detection of plasmid-based gfp and lacZ antibiotic-resistance genes could be generated. In the plate counting method, many antibiotic-resistant bacteria from a soil microcosm grew as colonies on antibiotic-containing agar plates. The multiplex PCR verification of randomly selected antibiotic-resistant colonies with specific primers proved ineffective. The MPN-multiplex PCR method and antibiotic-resistant phenotype could be successfully used to detect GMMs, although this method is quite laborious. The MPN-DNA dot blot method screened more cells at a time in a microtiter plate containing the corresponding antibiotics, and was shown to be a more efficient method for the detection of GMMs in soil using specific probes in terms of labor and accuracy. | 2011 | 21810467 |