REACTIONS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
621200.9960Strain differences in the susceptibility and resistance of Pasteurella multocida to phagocytosis and killing by rabbit polymorphonuclear neutrophils. The interactions of 2 capsular serotype A and 4 serotype D strains of Pasteurella multocida with rabbit polymorphonuclear neutrophils (PMN) were compared in vitro, using a PMN phagocytic and bactericidal assay. Bacteria and rabbit PMN were incubated for 15 minutes. The suspensions were subjected to differential centrifugation and the percentage of phagocytosis (cell association) was determined from the number of viable noncell-associated bacteria. The cell pellets and the associated bacteria were resuspended and PMN bactericidal activity was calculated from the number of remaining viable cell-associated bacteria at 45 and 75 minutes after the start of the assay. Test bacteria were not opsonized or were opsonized with immune serum containing active complement. One type A strain was ingested and killed by PMN in the presence and absence of opsonins. The 5 remaining strains were resistant to PMN killing, but only the type A strain resisted phagocytosis. Resistance of the type A strain was attributed to the hyaluronic acid capsule, since pretreatment of the bacteria with hyaluronidase rendered opsonized bacteria susceptible to ingestion and killing. The pattern of resistance of the 4 type D strains was different from that of the resistant type A strain. Both opsonized and nonopsonized type D bacteria became cell associated, but none were killed by PMN. The mechanism of resistance of these 4 strains to PMN bactericidal activity is currently unknown.19846742581
49910.9959Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. Mycobacterium abscessus belongs to a group of rapidly growing mycobacteria (RGM) and accounts for approximately 65-80% of lung disease caused by RGM. It is highly pathogenic and is considered the prominent Mycobacterium involved in pulmonary infection in patients with cystic fibrosis and chronic pulmonary disease (CPD). FosM is a putative 134 amino acid fosfomycin resistance enzyme from M. abscessus subsp. bolletii that shares approximately 30-55% sequence identity with other vicinal oxygen chelate (VOC) fosfomycin resistance enzymes and represents the first of its type found in any Mycobacterium species. Genes encoding VOC fosfomycin resistance enzymes have been found in both Gram-positive and Gram-negative pathogens. Given that FosA enzymes from Gram-negative bacteria have evolved optimum activity towards glutathione (GSH) and FosB enzymes from Gram-positive bacteria have evolved optimum activity towards bacillithiol (BSH), it was originally suggested that FosM might represent a fourth class of enzyme that has evolved to utilize mycothiol (MSH). However, a sequence similarity network (SSN) analysis identifies FosM as a member of the FosX subfamily, indicating that it may utilize water as a substrate. Here we have synthesized MSH and characterized FosM with respect to divalent metal ion activation and nucleophile selectivity. Our results indicate that FosM is a Mn(2+)-dependent FosX-type hydrase with no selectivity toward MSH or other thiols as analyzed by NMR and mass spectroscopy.201932952996
6620.9959Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. To identify plant defense components that are important in restricting the growth of virulent pathogens, we screened for Arabidopsis mutants in the accession Columbia (carrying the transgene BGL2-GUS) that display enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326. Among six (out of a total of 11 isolated) enhanced disease susceptibility (eds) mutants that were studied in detail, we identified one allele of the previously described npr1/nim1/sai1 mutation, which is affected in mounting a systemic acquired resistance response, one allele of the previously identified EDS5 gene, and four EDS genes that have not been previously described. The six eds mutants studied in detail (npr1-4, eds5-2, eds10-1, eds11-1, eds12-1, and eds13-1) displayed different patterns of enhanced susceptibility to a variety of phytopathogenic bacteria and to the obligate biotrophic fungal pathogen Erysiphe orontii, suggesting that particular EDS genes have pathogen-specific roles in conferring resistance. All six eds mutants retained the ability to mount a hypersensitive response and to restrict the growth of the avirulent strain Psm ES4326/avrRpt2. With the exception of npr1-4, the mutants were able to initiate a systemic acquired resistance (SAR) response, although enhanced growth of Psm ES4326 was still detectable in leaves of SAR-induced plants. The data presented here indicate that eds genes define a variety of components involved in limiting pathogen growth, that many additional EDS genes remain to be discovered, and that direct screens for mutants with altered susceptibility to pathogens are helpful in the dissection of complex pathogen response pathways in plants.19989611172
9230.9959Quantitative trait loci for partial resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Segregation of partial resistance to Pseudomonas syringae pv. maculicola (Psm) ES4326 was studied in the recombinant inbred population created from accessions (ecotypes) Columbia (Col-4), the more susceptible parent, and Landsberg (Ler-0). Plants were spray inoculated with lux-transformed bacteria in experiments to measure susceptibility. The amount of disease produced on a range of Col × Ler lines by spray inoculation was highly correlated with that produced by pressure infiltration of bacteria into the apoplast. Quantitative trait locus (QTL) analysis identified four loci that contributed to partial resistance: QRpsJIC-1.1, QRpsJIC-2.1, QRpsJIC-3.1 and QRpsJIC-5.1 on chromosomes 1, 2, 3 and 5, respectively. QRpsJIC-3.1, located 8.45 cM from the top of the consensus genetic map of chromosome 3, had a large, approximately additive effect on partial resistance, explaining 50% of the genetic variation in this population. Fine mapping narrowed the region within which this QTL was located to 62 genes. A list of candidate genes included several major classes of resistance gene.201323724899
845440.9958Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BACKGROUND: The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. RESULTS: cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. CONCLUSION: These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering.201020047654
42650.9958Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane.19806995306
508560.9958Multiplex asymmetric PCR-based oligonucleotide microarray for detection of drug resistance genes containing single mutations in Enterobacteriaceae. A multiplex asymmetric PCR (MAPCR)-based microarray method was developed for the detection of 10 known extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC beta-lactamase genes in gram-negative bacteria and for the typing of six important point mutations (amino acid positions 35, 43, 130, 179, 238, and 240) in the bla(SHV) gene. The MAPCR is based on a two-round reaction to promote the accumulation of the single-stranded amplicons amenable for microarray hybridization by employing multiple universal unrelated sequence-tagged primers and elevating the annealing temperature at the second round of amplification. A strategy to improve the discrimination efficiency of the microarray was constituted by introducing an artificial mismatch into some of the allele-specific oligonucleotide probes. The microarray assay correctly identified the resistance genes in both the reference strains and some 111 clinical isolates, and these results were also confirmed for some isolates by direct DNA sequence analysis. The resistance genotypes determined by the microarray correlated closely with phenotypic MIC susceptibility testing. This fast MAPCR-based microarray method should prove useful for undertaking important epidemiological studies concerning ESBLs and plasmid-mediated AmpC enzymes and could also prove invaluable as a preliminary screen to supplement phenotypic testing for clinical diagnostics.200717646412
588270.9958PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Polymerase chain reaction (PCR) analysis enables rapid and accurate detection of beer-spoilage lactic acid bacteria (LAB). Hop resistance genes, horA and horC, are utilized as genetic markers to determine the spoilage ability of LAB strains. PCR analysis of horA and horC, combined with multiplex PCR methods of 12 beer-spoilage species, enables simultaneous and comprehensive detection easily and inexpensively.201930506252
478580.9958Study of MazEF, sam, and phd-doc putative toxin-antitoxin systems in Staphylococcus epidermidis. Today, to replace the antibacterial targets to overcome antibiotic resistance, toxin-antitoxin (TA) system is noticeable, where the unstable antitoxin neutralizes the stable toxin and protects the bacteria against the toxic effects. The presence and expression of TA genes in clinical and non-clinical strains of Staphylococcus epidermidis were investigated in this study. After identification of three TA pairs (mazEF, sam, and phd-doc) via existing databases (earlier, there has been no information in the case of S. epidermidis isolates), the presence and expression of these pairs were investigated by PCR and q-PCR, respectively. We detected three TA modules in all antibiotic sensitive and resistant isolates. In addition, q-PCR analysis revealed that the transcripts were produced from the three TA modules. This study showed the significant prevalence of these systems in pathogenic bacteria and they were equally found in both oxacillin-resistant and oxacillin-susceptible bacteria. The high prevalence of three systems can make them suitable as potential targets for antibiotic therapy.201829471693
6390.9958RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. A molecular genetic approach was used to identify and characterize plant genes that control bacterial disease resistance in Arabidopsis. A screen for mutants with altered resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) expressing the avirulence gene avrRpt2 resulted in the isolation of four susceptible rps (resistance to P. syringae) mutants. The rps mutants lost resistance specifically to bacterial strains expressing avrRpt2 as they retained resistance to Pst strains expressing the avirulence genes avrB or avrRpm1. Genetic analysis indicated that in each of the four rps mutants, susceptibility was due to a single mutation mapping to the same locus on chromosome 4. Identification of a resistance locus with specificity for a single bacterial avirulence gene suggests that this locus, designated RPS2, controls specific recognition of bacteria expressing the avirulence gene avrRpt2. Ecotype Wü-0, a naturally occurring line that is susceptible to Pst strains expressing avrRpt2, appears to lack a functional allele at RPS2, demonstrating that there is natural variation at the RPS2 locus among wild populations of Arabidopsis.19938400869
8788100.9958Plant nitrate supply regulates Erwinia amylovora virulence gene expression in Arabidopsis. We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites.202134382308
5798110.9958Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis.200717913394
6171120.9958Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. The inoculation of a temperature-sensitive mutant of Salmonella typhimurium induced a long-lasting infection in susceptible (C57BL/6) and resistant (A/J) mice. During week 1 of infection, the number of bacteria in the spleens was similar in both mouse strains. Then, the decrease of bacteria was more rapid in the resistant strain. Splenomegaly and granulomatous hepatitis were more severe in the susceptible strain. The immune response induced by this infection was studied. In both mouse strains delayed-type hypersensitivity to Salmonella antigens was present, and resistance to reinfection with a virulent strain of S. typhimurium or with Listeria monocytogenes appeared with the same kinetics. Thus, it does not seem that the gene(s) controlling natural resistance to S. typhimurium act(s) on acquired immunity.19853897053
4741130.9957Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Titanium dioxide-modified target plates were developed to enhance intact bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The plates were designed to photocatalytically destroy the bacterial envelope structure and improve the ionization efficiency of intracellular components, thereby promoting the measurable mass range and the achievable detection sensitivity. Accordingly, a method for rapid detection of antimicrobial resistance-associated proteins, conferring bacterial resistance against antimicrobial drugs, was established by mass spectrometric fingerprinting of intact bacteria without the need for any sample pre-treatment. With this method, the variations in resistance proteins' expression levels within bacteria were quickly measured from the relative peak intensities. This approach of resistance protein detection directly from intact bacteria by mass spectrometry is useful for fast discrimination of antimicrobial-resistant bacteria from their non-resistant counterparts whilst performing species identification. Also, it could be used as a rapid and convenient way for initial determination of the underlying resistance mechanisms.201829719694
6213140.9957Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Phagocytosis resistance is an important virulence factor in Klebsiella pneumoniae. Dictyostelium has been used to study the interaction between phagocytes and bacteria because of its similarity to mammalian macrophages. In this study, we used a Dictyostelium model to investigate genes for resistance to phagocytosis in NTUH-K2044, a strain of K. pneumoniae causing pyogenic liver abscess that is highly resistant to phagocytosis. A total of 2,500 transposon mutants were screened by plaque assay, and 29 of them permitted phagocytosis by Dictyostelium. In the 29 mutants, six loci were identified; three were capsular synthesis genes. Of the other three, one was related to carnitine metabolism, one encoded a subunit of protease (clpX), and one encoded a lipopolysaccharide O-antigen transporter (wzm). Deletion and complementation of these genes showed that only ΔclpX and Δwzm mutants became susceptible to Dictyostelium phagocytosis, and their complementation restored the phagocytosis resistance phenotype. These two mutants were also susceptible to phagocytosis by human neutrophils and revealed attenuated virulence in a mouse model, implying that they play important roles in the pathogenesis of K. pneumoniae. Furthermore, we demonstrated that clpP, which exists in an operon with clpX, was also involved in resistance to phagocytosis. The transcriptional profile of ΔclpX was examined by microarray analysis and revealed a 3-fold lower level of expression of capsular synthesis genes. Therefore, we have identified genes involved in resistance to phagocytosis in K. pneumoniae using Dictyostelium, and this model is useful to explore genes associated with resistance to phagocytosis in heavily encapsulated bacteria.201121173313
5829150.9957Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.202133970612
443160.9957Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid.19911954576
75170.9956Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.200415553246
5795180.9956Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria.201525536666
6355190.9956Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria.200515691931