RCS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
51900.9645The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.201222563425
60610.9636Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.202133923690
818820.9631Biofilm in implant infections: its production and regulation. A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intraocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intra-ocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.200516353112
61530.9631Escherichia coli RclA is a highly active hypothiocyanite reductase. Hypothiocyanite and hypothiocyanous acid (OSCN(-)/HOSCN) are pseudohypohalous acids released by the innate immune system which are capable of rapidly oxidizing sulfur-containing amino acids, causing significant protein aggregation and damage to invading bacteria. HOSCN is abundant in saliva and airway secretions and has long been considered a highly specific antimicrobial that is nearly harmless to mammalian cells. However, certain bacteria, commensal and pathogenic, are able to escape damage by HOSCN and other harmful antimicrobials during inflammation, which allows them to continue to grow and, in some cases, cause severe disease. The exact genes or mechanisms by which bacteria respond to HOSCN have not yet been elucidated. We have found, in Escherichia coli, that the flavoprotein RclA, previously implicated in reactive chlorine resistance, reduces HOSCN to thiocyanate with near-perfect catalytic efficiency and strongly protects E. coli against HOSCN toxicity. This is notable in E. coli because this species thrives in the chronically inflamed environment found in patients with inflammatory bowel disease and is able to compete with and outgrow other important commensal organisms, suggesting that HOSCN may be a relevant antimicrobial in the gut, which has not previously been explored. RclA is conserved in a variety of epithelium-colonizing bacteria, implicating its HOSCN reductase activity in a variety of host-microbe interactions. We show that an rclA mutant of the probiotic Limosilactobacillus reuteri is sensitive to HOSCN and that RclA homologs from Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides thetaiotaomicron all have potent protective activity against HOSCN when expressed in E. coli.202235867824
58240.9630Sulfane Sulfur Is a Strong Inducer of the Multiple Antibiotic Resistance Regulator MarR in Escherichia coli. Sulfane sulfur, including persulfide and polysulfide, is produced from the metabolism of sulfur-containing organic compounds or from sulfide oxidation. It is a normal cellular component, participating in signaling. In bacteria, it modifies gene regulators to activate the expression of genes involved in sulfur metabolism. However, to determine whether sulfane sulfur is a common signal in bacteria, additional evidence is required. The ubiquitous multiple antibiotic resistance regulator (MarR) family of regulators controls the expression of numerous genes, but the intrinsic inducers are often elusive. Recently, two MarR family members, Pseudomonas aeruginosa MexR and Staphylococcus aureus MgrA, have been reported to sense sulfane sulfur. Here, we report that Escherichia coli MarR, the prototypical member of the family, also senses sulfane sulfur to form one or two disulfide or trisulfide bonds between two dimers. Although the tetramer with two disulfide bonds does not bind to its target DNA, our results suggest that the tetramer with one disulfide bond does bind to its target DNA, with reduced affinity. An MarR-repressed mKate reporter is strongly induced by polysulfide in E. coli. Further investigation is needed to determine whether sulfane sulfur is a common signal of the family members, but three members sense cellular sulfane sulfur to turn on antibiotic resistance genes. The findings offer additional support for a general signaling role of sulfane sulfur in bacteria.202134829649
906250.9630Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.201425022851
80660.9628A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. The genes nepAB of a small multidrug resistance (SMR) pump were identified as part of the pAO1-encoded nicotine regulon responsible for nicotine catabolism in Arthrobacter nicotinovorans. When [(14)C]nicotine was added to the growth medium the bacteria exported the (14)C-labelled end product of nicotine catabolism, methylamine. In the presence of the proton-motive force inhibitors 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the proton ionophore nigericin, export of methylamine was inhibited and radioactivity accumulated inside the bacteria. Efflux of [(14)C]nicotine-derived radioactivity from bacteria was also inhibited in a pmfR : cmx strain with downregulated nepAB expression. Because of low amine oxidase levels in the pmfR : cmx strain, gamma-N-methylaminobutyrate, the methylamine precursor, accumulated. Complementation of this strain with the nepAB genes, carried on a plasmid, restored the efflux of nicotine breakdown products. Both NepA and NepB were required for full export activity, indicating that they form a two-component efflux pump. NepAB may function as a metabolic valve by exporting methylamine, the end product of nicotine catabolism, and, in conditions under which it accumulates, the intermediate gamma-N-methylaminobutyrate.200717464069
58370.9628MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.202438948149
53980.9627A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.201021059273
834890.9625Role of RelA-synthesized (p)ppGpp and ROS-induced mutagenesis in de novo acquisition of antibiotic resistance in E. coli. The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.202438617560
715100.9625Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing. Treatment of Staphylococcus aureus infections is a constant challenge due to emerging resistance to vancomycin, a last-resort drug. S-nitrosylation, the covalent attachment of a nitric oxide (NO) group to a cysteine thiol, mediates redox-based signaling for eukaryotic cellular functions. However, its role in bacteria is largely unknown. Here, proteomic analysis revealed that S-nitrosylation is a prominent growth feature of vancomycin-intermediate S. aureus. Deletion of NO synthase (NOS) or removal of S-nitrosylation from the redox-sensitive regulator MgrA or WalR resulted in thinner cell walls and increased vancomycin susceptibility, which was due to attenuated promoter binding and released repression of genes involved in cell wall metabolism. These genes failed to respond to H(2)O(2)-induced oxidation, suggesting distinct transcriptional responses to alternative modifications of the cysteine residue. Furthermore, treatment with a NOS inhibitor significantly decreased vancomycin resistance in S. aureus. This study reveals that transcriptional regulation via S-nitrosylation underlies a mechanism for NO-mediated bacterial antibiotic resistance.202337085493
547110.9623Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter.200717586628
8150120.9623ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Leguminous plants have exclusive ability to form symbiotic relationship with soil bacteria of the genus Rhizobium. Symbiosis is a complex process that involves multiple molecular signaling activities, such as calcium fluxes, production of reactive oxygen species (ROS) and synthesis of nodulation genes. We analyzed the role of ROS in defense gene expression in Medicago truncatula during symbiosis and pathogenesis. Studies in Arabidopsis thaliana showed that the induction of pathogenesis-related (PR) genes during systemic acquired resistance (SAR) is regulated by NPR1 protein, which resides in the cytoplasm as an oligomer. After oxidative burst and return of reducing conditions, the NPR1 undergoes monomerization and becomes translocated to the nucleus, where it functions in PR genes induction. We show that ROS production is both stronger and longer during symbiotic interactions than during interactions with pathogenic, nonhost or common nonpathogenic soil bacteria. Moreover, root cells inoculated with Sinorhizobium meliloti accumulated ROS in the cytosol but not in vacuoles, as opposed to Pseudomonas putida inoculation or salt stress treatment. Furthermore, increased ROS accumulation by addition of H₂O₂ reduced the PR gene expression, while catalase had an opposite effect, establishing that the PR gene expression is opposite to the level of cytoplasmic ROS. In addition, we show that salicylic acid pretreatment significantly reduced ROS production in root cells during symbiotic interaction.201222499208
8432130.9623A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria. Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi(4)MoO(9)/two-dimensional (2D) Bi(2)MoO(6), MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.202337531599
8292140.9623Exopolysaccharide anchoring creates an extreme resistance to sedimentation. By evolving strains of E. coli that hyper-resist sedimentation, we discovered an uncharacterized mechanism that bacteria can use to remain in suspension indefinitely without expending energy. This unusual phenotype was traced to the anchoring of long colanic acid polymers (CAP) that project from the cell surface. Although each characterized mutant activated this same mechanism, the genes responsible and the strengths of the phenotypes varied. Mutations in rcsC, lpp, igaA, or the yjbEFGH operon were sufficient to stimulate sedimentation resistance, while mutations altering the cps promoter, cdgI, or yjbF provided phenotypic enhancements. The sedimentation resistances changed in response to temperature, growth phase, and carbon source and each mutant exhibited significantly reduced biofilm formation. We discovered that the degree of colony mucoidy exhibited by these mutants was not related to the degree of Rcs pathways activation or to the amount of CAP that was produced; rather, it was related to the fraction of CAP that was shed as a true exopolysaccharide. Therefore, these and other mutations that activate this phenotype are likely to be absent from genetic screens that relied on centrifugation to harvest bacteria. We also found that this anchored CAP form is not linked to LPS cores and may not be attached to the outer membrane.IMPORTANCEBacteria can partition in aqueous environments between surface-dwelling, planktonic, sedimentary, and biofilm forms. Residence in each location provides an advantage depending on nutritional and environmental stresses and a community of a single species is often observed to be distributed throughout two or more of these niches. Another adaptive strategy is to produce an extracellular capsule, which provides an environmental shield for the microbe and can allow escape from predators and immune systems. We discovered that bacteria can either shed or stably anchor capsules to dramatically alter their propensity to sediment. The degree to which the bacteria anchor their capsule is controlled by a stress sensing system, suggesting that anchoring may be used as an adaptive response to severe environmental challenges.202133753470
602150.9623The Bacterial Mfd Protein Prevents DNA Damage Induced by the Host Nitrogen Immune Response in a NER-Independent but RecBC-Dependent Pathway. Production of reactive nitrogen species is an important component of the host immune defence against bacteria. Here, we show that the bacterial protein Mfd (Mutation frequency decline), a highly conserved and ubiquitous bacterial protein involved in DNA repair, confers bacterial resistance to the eukaryotic nitrogen response produced by macrophage cells and during mice infection. In addition, we show that RecBC is also necessary to survive this stress. The inactivation of recBC and mfd genes is epistatic showing that Mfd follows the RecBC repair pathway to protect the bacteria against the genotoxic effect of nitrite. Surprisingly given the role of Mfd in transcription-coupled repair, UvrA is not necessary to survive the nitrite response. Taken together, our data reveal that during the eukaryotic nitrogen response, Mfd is required to maintain bacterial genome integrity in a NER-independent but RecBC-dependent pathway.201627711223
748160.9622Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal "translocation domains." These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.201526305955
600170.9621Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Protein mistranslation causes growth arrest in bacteria, mitochondrial dysfunction in yeast, and neurodegeneration in mammals. It remains poorly understood how mistranslated proteins cause such cellular defects. Here we demonstrate that streptomycin, a bactericidal aminoglycoside that increases ribosomal mistranslation, induces transient protein aggregation in wild-type Escherichia coli. We further determined the aggregated proteome using label-free quantitative mass spectrometry. To identify genes that reduce cellular mistranslation toxicity, we selected from an overexpression library protein products that increased resistance against streptomycin and kanamycin. The selected proteins were significantly enriched in members of the oxidation-reduction pathway. Overexpressing one of these proteins, alkyl hydroperoxide reductase subunit F (a protein defending bacteria against hydrogen peroxide), but not its inactive mutant suppressed aggregated protein formation upon streptomycin treatment and increased aminoglycoside resistance. This work provides in-depth analyses of an aggregated proteome caused by streptomycin and suggests that cellular defense against hydrogen peroxide lowers the toxicity of mistranslation.201223122414
571180.9620Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Bacteria have evolved different systems to tightly control both cytosolic and envelope copper concentration to fulfil their requirements and at the same time, avoid copper toxicity. We have previously demonstrated that, as in Escherichia coli, the Salmonella cue system protects the cytosol from copper excess. On the other hand, and even though Salmonella lacks the CusCFBA periplasmic copper efflux system, it can support higher copper concentrations than E. coli under anaerobic conditions. Here we show that the Salmonella cue regulon is also responsible for the control of copper toxicity in anaerobiosis. We establish that resistance in this condition requires a novel CueR-controlled gene named cueP. A DeltacueP mutant is highly susceptible to copper in the absence of oxygen, but shows a faint phenotype in aerobic conditions unless other copper-resistance genes are also deleted, resembling the E. coli CusCFBA behaviour. Species that contain a cueP homologue under CueR regulation have no functional CusR/CusS-dependent Cus-coding operon. Conversely, species that carry a CusR/CusS-regulated cus operon have no cueP homologues. Even more, we show that the CueR-controlled cueP expression increases copper resistance of a Deltacus E. coli. We posit that CueP can functionally replace the Cus complex for periplasmic copper resistance, in particular under anaerobic conditions.200919538445
8424190.9620Postseptational chromosome partitioning in bacteria. Mutations in the spoIIIE gene prevent proper partitioning of one chromosome into the developing prespore during sporulation but have no overt effect on partitioning in vegetatively dividing cells. However, the expression of spoIIIE in vegetative cells and the occurrence of genes closely related to spoIIIE in a range of nonsporulating eubacteria suggested a more general function for the protein. Here we show that SpoIIIE protein is needed for optimal chromosome partitioning in vegetative cells of Bacillus subtilis when the normal tight coordination between septation and nucleoid partitioning is perturbed or when septum positioning is altered. A functional SpoIIIE protein allows cells to recover from a state in which their chromosome has been trapped by a closing septum. By analogy to its function during sporulation, we suggest that SpoIIIE facilitates partitioning by actively translocating the chromosome out of the septum. In addition to enhancing the fidelity of nucleoid partitioning, SpoIIIE also seems to be required for maximal resistance to antibiotics that interfere with DNA metabolism. The results have important implications for our understanding of the functions of genes involved in the primary partitioning machinery in bacteria and of how septum placement is controlled.19957567988