# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2374 | 0 | 0.9968 | Phenotypic and genetic antimicrobial resistance of the intestinal microbiota isolated from two alpacas (Vicugna pacos) post mortem. INTRODUCTION: In Poland, alpacas are commonly companion animals and producers of wool. Human-alpaca-environment interactions raise One Health concerns about antimicrobial resistance (AMR). No medications are licensed in Poland for camelids, and so all are prescribed under the cascade; they include β-lactams, cephalosporin, florfenicol, enrofloxacin, marbofloxacin, gentamicin, tetracycline and trimethoprim/sulfamethoxazole. Human and animal bacterial AMR is a matter of global concern. Consequently, the aim of the present study was to determine the prevalence of phenotypic and genotypic AMR among bacteria isolated from alpaca intestines. MATERIAL AND METHODS: Fifty-four strains were identified using matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry and biochemical methods. Antibacterial susceptibility was assessed by determining minimum inhibitory concentrations and by the Kirby-Bauer method. RESULTS: Citrobacter spp., Enterobacter spp. and Serratia spp. exhibited resistance to β-lactams, first-generation cephalosporins and tetracyclines, with Serratia spp. also resistant to colistin, polymyxin B and florfenicol. Enterococcus spp. were resistant to penicillin G, benzylpenicillin and erythromycin, but not to vancomycin, while Staphylococcus spp. showed resistance to amoxicillin and penicillins, but not to methicillin. Bacillus spp. and Corynebacterium spp. were resistant to some penicillins, tetracyclines and trimethoprim-sulfamethoxazole. Enterobacteriaceae isolates carried resistance genes (aadA, dfrA1, tetA, sul1, sul2, strA/strB and floR); therefore, the tested alpacas' microbiomes harboured AMR determinants. CONCLUSION: Alpacas should be monitored over an extended period to know the risk of transmission of AMR genes from components of their microbiome. | 2025 | 41064399 |
| 2364 | 1 | 0.9965 | Association of multilocus sequencing types and antimicrobial resistance profiles of methicillin-resistant Mammaliicoccus sciuri in animals in Southern Thailand. BACKGROUND AND AIM: Mammaliicoccus sciuri, formerly known as Staphylococcus sciuri, is an opportunistic pathogen in the environment, human and animal mucosa, and skin. Although this pathogen is becoming more resistant to drugs and harmful to animals and humans, basic knowledge of this pathogen remains limited. This study aimed to investigate a new multilocus sequencing type (MLST) related to the antibiotic resistance pattern of M. sciuri from animals in southern Thailand. MATERIALS AND METHODS: We used 11 methicillin-resistant M. sciuri (MRMS) isolates in this study which were obtained from six horses, four cows, and one chicken of the previous study. Antimicrobial resistance (AMR) was re-evaluated based on the minimum inhibitory concentration using the VITEK(®) 2 automated system. Three AMR genes were examined, namely mecA, mecC, and blaZ. Staphylococcal chromosomal cassette mec (SCCmec) gene detection was performed through the multiplex polymerase chain reaction (PCR). Internal segments of the seven housekeeping genes, ack, aroE, ftsZ, glpK, gmk, pta1, and tpiA, were used for multilocus sequence typing. The population of resistant bacteria and the types of multidrug-resistant, extensively drug-resistant, and pandemic drug-resistant bacteria were classified through descriptive analysis. RESULTS: mecA and blaZ genes were detected in all isolates; however, the mecC gene was not observed in any isolate based on the PCR results. All MRMS isolates revealed a non-typable SCCmec. Seven MLSTs (71, 81, 120, 121, 122, 199, and 200) were identified in this study. CONCLUSION: The characteristics of MRMS in Southern Thailand were variable, particularly in cattle and horses. The antibiogram and SCCmec types of this pathogen remain concerns with regard to antibiotic-resistant gene transmission among Staphylococcus and Mammaliicoccus species. All MLSTs in Thailand revealed the distribution among clones in Asia, including the virulence of a zoonotic clone in Southern Thailand. | 2023 | 37041994 |
| 2944 | 2 | 0.9964 | Antimicrobial Resistance in Wildlife: Implications for Public Health. The emergence and spread of antimicrobial-resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black-headed gulls (Larus ridibundus), lesser black-back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty-six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug-resistant phenotypes. The phylogenetic group and AMR-encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline-, ampicillin- and streptomycin-resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: bla(TEM), strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug-resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR. | 2015 | 25639901 |
| 852 | 3 | 0.9964 | Antimicrobial Resistance in Bacteria Isolated from Exotic Pets: The Situation in the Iberian Peninsula. Literature related to antimicrobial resistant (AMR) bacteria in exotic pets is minimal, being essential to report objective data on this topic, which represents a therapeutic challenge for veterinary medicine and public health. Between 2016 and 2020, laboratory records of 3156 exotic pet specimens' microbiological diagnoses and antibiotic susceptibility testing (AST) results were examined. The samples were classified into three animal classes: birds (n = 412), mammalia (n = 2399), and reptilian (n = 345). The most prevalent bacteria in birds and mammals were Staphylococcus spp. (15% and 16%), while in reptiles they were Pseudomonas spp. (23%). Pseudomonas was the genus with the highest levels of AMR in all animal groups, followed by Enterococcus spp. By contrast, Gram-positive cocci and Pasteurella spp. were the most sensitive bacteria. Moreover, in reptiles, Stenotrophomonas spp., Morganella spp., and Acinetobacter spp. presented high levels of AMR. Multidrug-resistant (MDR) bacteria were isolates from reptiles (21%), birds (17%), and mammals (15%). The Enterobacterales had the highest MDR levels: S. marcescens (94.4%), C. freundii (50%), M. morganii (47.4%), K. pneumoniae (46.6%), E. cloacae (44%), and E. coli (38.3%). The prevalence of MDR P. aeruginosa strains was 8%, detecting one isolate with an XDR profile. Regarding antimicrobial use, many antibiotics described as critically important for human use had significant AMR prevalence in bacteria isolated from exotic pets. Under the One-Health approach, these results are alarming and of public health concern since potential transmission of AMR bacteria and genes can occur from exotic pets to their owners in both senses. For this reason, the collaboration between veterinarians and public health professionals is crucial. | 2022 | 35953901 |
| 2608 | 4 | 0.9964 | The investigation of bacteria in the oral of Trichomonas gallinae infected pigeons and the antibiotic resistance analysis of Klebsiella pneumoniae clinical isolates from farm pigeons in Shandong Province of China. While the global dissemination of extended-spectrum β-lactamases (ESBLs) in clinical isolates from various animals is well-documented, research on Klebsiella pneumoniae in Trichomonas gallinae-infected pigeons, particularly concerning antibiotic resistance genes in China, remains limited. This study aimed to investigate the relationship between oral harmful microbiota in pigeons and T. gallinae infection, as well as to isolate K. pneumoniae from the oral cavities of infected pigeons. Furthermore, we assessed the resistance profiles of K. pneumoniae isolates against quinolones, tetracyclines, and aminoglycosides, and identified the carriers of related resistance genes, including bla genes encoding SHV, TEM, and CTX-M-9 ESBLs.Our results revealed that approximately 30% of pigeons from Laiwu City and Tai'an City in Shandong Province were infected with T. gallinae. Notably, the species diversity and abundance of oral bacteria were significantly higher in infected pigeons compared to their uninfected counterparts, indicating a positive correlation between T. gallinae infection and oral microbial alterations. Among the 14 bacterial species isolated from oral samples of infected pigeons, seven were identified as K. pneumoniae isolates. The majority of these isolates exhibited multidrug resistance to ampicillin, ceftazidime, cefotaxime, and aminoglycosides. PCR analysis confirmed the presence of TEM, SHV, and CTX-M-9 genes in all seven K. pneumoniae isolates. The predominant plasmid-mediated resistance genes included qnrB (for quinolones), tetA (for tetracyclines), and aac(6')-Ⅰb (for aminoglycosides). These findings provide a overview of antibiotic susceptibility patterns and the emergence of resistance genes in K. pneumoniae isolates from farm pigeons in Shandong, China. They underscore the widespread multidrug resistance in these isolates and highlight the potential risk of antibiotic resistance transmission between animals and humans. | 2025 | 40915084 |
| 5615 | 5 | 0.9963 | Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance. | 2024 | 39200000 |
| 2720 | 6 | 0.9963 | Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies. | 2025 | 40760424 |
| 5605 | 7 | 0.9963 | Antibiotic resistance in conjunctival and enteric bacterial flora in raptors housed in a zoological garden. Antimicrobial resistance (AMR) in a wide range of infectious agents is a growing public health threat. Birds of prey are considered indicators of the presence of AMR bacteria in their ecosystem because of their predatory behaviour. Only few data are reported in the literature on AMR strains isolated from animals housed in zoos and none about AMR in raptors housed in zoological gardens. This study investigated the antibiotic sensitivity profile of the isolates obtained from the conjunctival and cloacal bacterial flora of 14 healthy birds of prey, 6 Accipitriformes, 3 Falconiformes and 5 Strigiformes, housed in an Italian zoological garden. Staphylococcus spp. was isolated from 50% of the conjunctival swabs, with S. xylosus as the most common species. From cloacal swabs, Escherichia coli was cultured from all animals, while Klebsiella spp. and Proteus spp. were isolated from a smaller number of birds. Worthy of note is the isolation of Escherichia fergusonii and Serratia odorifera, rarely isolated from raptors. Staphylococci were also isolated. All the isolates were multidrug resistant (MDR). To the author's knowledge, this is the first report regarding the presence of MDR strains within raptors housed in a zoological garden. Since resistance genes can be transferred to other pathogenic bacteria, this represents a potential hazard for the emergence of new MDR pathogens. In conclusion, the obtained data could be useful for ex-situ conservation programmes aimed to preserve the health of the endangered species housed in a zoo. | 2016 | 29067199 |
| 1204 | 8 | 0.9963 | Wild Birds as Drivers of Salmonella Braenderup and Multidrug Resistant Bacteria in Wetlands of Northern Italy. In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%). Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health. | 2024 | 40303189 |
| 2991 | 9 | 0.9963 | Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals. | 2023 | 37317052 |
| 1209 | 10 | 0.9963 | Molecular Detection of Shiga Toxin-Producing Escherichia coli O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens. The World Health Organization (WHO) describes Shiga toxin-producing Escherichia coli (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified E. coli isolates. Of these, 23 isolates (37.1%) were confirmed to be E. coli O177 serogroup through amplification of wzy gene. All E. coli O177 isolates possessed the virulence stx2 gene, while 65% carried the stx1 gene. Among the E. coli O177 isolates, three harboured a combination of vir + stx2 + stx1 + hlyA genes, while one isolate contained a combination of eaeA + stx2 + stx1 + hlyA genes. All E. coli O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of E. coli O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR E. coli O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern. | 2024 | 39665069 |
| 1208 | 11 | 0.9963 | Different Multidrug-Resistant Salmonella spp. Serovars Isolated from Slaughter Calves in Southern Brazil. Bovines are carriers of Salmonella spp., a relevant foodborne pathogen, acting as contamination sources in slaughterhouses. Calves are prone to infection, and antimicrobial resistance may occur in such bacteria. This study aimed to determine the prevalence and virulence determinants of Salmonella spp. recovered from calves in the Rio Grande do Sul state, Brazil. Eighty-five calves' carcasses were evaluated (leather and veal meat). Thirteen Salmonella spp. isolates (8%) from 11 animals (13%) were obtained only from leather, indicating that contamination occurred before slaughter and that the meat was safe regarding this aspect. The serotypes S. Minnesota, S. Abony, S. Cerro, and S. Gafsa were identified, and all isolates were multidrug-resistant. The isolates had at least 19 virulence-related genes, and the bla(OXA-48) resistance gene was detected in three (23%). The data suggest that treating infections caused by these bacteria may be difficult in animals from these farms and can also be an extended human health problem. | 2022 | 36459239 |
| 2962 | 12 | 0.9963 | Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species. | 2017 | 29254727 |
| 2402 | 13 | 0.9962 | Antimicrobial Resistance and Virulence Genes in Staphylococci Isolated from Aviary Capercaillies and Free-living Birds in South-eastern Poland. INTRODUCTION: The current study characterises Staphylococcus bacteria recovered from dead free-living birds and captive capercaillies kept in south-eastern Poland. The results provide novel information about the antimicrobial resistance phenotype/genotype and the virulence profile of these bacteria. MATERIAL AND METHODS: Samples of internal organs were taken from dead birds. Staphylococcus strains were identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry. Susceptibility to 13 antibiotics was tested using a standard disc diffusion method on Mueller-Hinton agar. All isolates were screened for the presence of antibiotic resistance genes and staphylococcal enterotoxins (A to E), toxic shock syndrome toxin 1, exfoliative toxins A and B and Panton-Valentine leukocidin. RESULTS: A total of 129 bacterial strains belonging to 19 species of the Staphylococcus genus were isolated. A relatively high percentage of them resisted fluoroquinolones, tetracyclines, macrolides and β-lactams to a significant degree and harboured the tetK, tetM, ermC, mphC and mecA genes. Strains of the coagulase-negative S. sciuri, S. xylosus and S. cohnii were isolated with genes encoding enterotoxin A and toxic shock syndrome toxin. CONCLUSION: Both coagulase-positive and coagulase-negative staphylococci isolated from aviary capercaillies and free-living birds have significant pathogenic potential, and greater attention must be paid to the coagulase-negative species, which are still often considered mere contaminants. Virulence factors associated with resistance to antimicrobials, this being multiple in some strains, seem most important because they can be easily transferred between animals, especially those living in a given area. | 2022 | 36349137 |
| 1606 | 14 | 0.9962 | Salmonella spp. profiles isolated from seabird samples from the Brazilian coast. In view of growing concerns, in a One Health context, regarding the transport and dissemination of pathogenic microorganisms among seabirds and other vertebrate animals, including humans, the aim of this study was to identify Salmonella spp. in stranded and non-stranded resident and migratory wild seabirds from the Brazilian coast. Antimicrobial susceptibility and molecular profiles, quinolone resistance genes and antigenic characterization of the isolates were also carried out. Fresh faeces and cloacal swabs were obtained totaling 122 seabirds sampled throughout different Brazilian coast regions. At the laboratory, sample culturing, Salmonella spp. isolation and biochemical identification were performed, followed by antigenic profile identification by serum agglutination, susceptibility profile characterization by the agar disc diffusion technique, detection of quinolone resistance genes (qnrA, qnrB, qnrS) using the multiplex polymerase chain reaction technique (multiplex PCR) and, finally, isolates profiles identification by pulsed field gel electrophoresis (PFGE). Salmonella enterica subsp. enterica was identified in 7% of the studied birds, comprising three different serovars: Panama (63 %), Typhimurium (25 %) and Newport (13 %). The most important findings reported herein are the first description of Salmonella panama in seabirds and the totality of isolates being resistant (or intermediate) to at least one tested antimicrobial, with emphasis on quinolone resistance. The molecular results suggest that the observed resistance cannot be explained by the presence of plasmid-mediated quinolone resistance genes. The PFGE suggests that the Panama and Newport profiles detected herein are not yet widespread in Brazil, unlike Typhimurium, which is already well distributed throughout the country. Considering this finding, we suggest that seabirds are an important link in the epidemiological chain of this serovar. The monitoring of these bacteria in seabirds, as well as of their susceptibility profiles to antimicrobials, must be continuous, strengthening the role of these animals as environmental health indicators and sentinels. | 2021 | 34175569 |
| 2655 | 15 | 0.9962 | Prevalence, virulence factors, and antibiotic resistance of Staphylococcus aureus in seafood products. INTRODUCTION: Seafood contamination by bacteria is a pervasive issue, contributing to foodborne illnesses. This study investigates the prevalence, virulence factors, and antibiotic resistance in Staphylococcus aureus (S. aureus) isolated from various seafood products. METHODS: A total of 460 samples, including fresh, smoked, salted, and dried fish, as well as oysters, crab, lobster, and shrimp, were collected in Shahrekord, Iran. S. aureus isolation followed ISO standards, with confirmation via PCR for 16S rRNA and nuc genes. Antibiotic susceptibility was determined via Kirby-Bauer disc diffusion, while PCR detected enterotoxin and antibiotic resistance genes. FINDINGS: S. aureus was prevalent in all seafood types, with 27.83% positivity. Methicillin-resistant S. aureus (MRSA) was found in most samples, except oysters and crabs. Virulence genes were common, with Sea, Seb, Sed, Sec, and See being the most prevalent. High resistance to penicillin G and ampicillin (70%- 100%) was observed. Resistance varied for other antibiotics, with linezolid showing 100% susceptibility. The mecA gene was present in over 50% of isolates, with blaZ being the most detected resistance gene. CONCLUSION: The study underscores the need for Good Hygiene Practices (GHP) in seafood processing to mitigate S. aureus transmission. While specific comparisons between sample types were limited, the findings emphasize the prevalence of virulence factors and antibiotic resistance in seafood-associated S. aureus, highlighting the importance of vigilant food safety measures. | 2025 | 40247155 |
| 2662 | 16 | 0.9962 | Nasal Carriage of Methicillin-Resistant Staphylococcus Sciuri Group by Residents of an Urban Informal Settlement in Kenya. BACKGROUND: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. OBJECTIVES: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. METHOD: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK(®)2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. CONCLUSION: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts. | 2023 | 37529492 |
| 851 | 17 | 0.9962 | Looking for ESKAPE Bacteria: Occurrence and Phenotypic Antimicrobial Resistance Profiles in Wild Birds from Northern and Central Italy Sites. BACKGROUND/OBJECTIVES: Antimicrobial resistance is a critical global health challenge. Among resistant pathogens, the group of bacteria collectively referred to as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) is of particular concern due to their ability to evade multiple classes of antimicrobials. This study aimed to investigate the occurrence and resistance patterns of ESKAPE bacteria in wild birds from Northern and Central Italy sites, and to assess the presence of other bacteria of public health relevance. METHODS: Cloacal swabs were collected from 141 wild birds. Samples were processed on selective and differential media, and bacterial identification was performed using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility was evaluated through Minimum Inhibitory Concentration assays and interpreted according to international guidelines. RESULTS: Thirty-seven isolates belonging to the ESKAPE group were identified: E. faecium (n = 10), K. pneumoniae (n = 9), P. aeruginosa (n = 8), Enterobacter spp. (n = 7), S. aureus (n = 2), and A. baumannii (n = 1). Multidrug-resistant isolates were observed among K. pneumoniae and Enterobacter hormaechei. Escherichia coli, although not included in the ESKAPE group, was frequently detected and often co-isolated with clinically relevant bacteria, highlighting its potential role as a reservoir of resistance genes. CONCLUSIONS: Wild birds can harbor resistant bacteria of clinical importance, including multidrug-resistant ESKAPE species. Their presence in avian populations underscores the role of wildlife in the environmental dissemination of antimicrobial resistance, with implications for both animal and human health. | 2025 | 41148717 |
| 2629 | 18 | 0.9962 | Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada. The spread of antimicrobial resistance from human activity derived sources to natural habitats implicates wildlife as potential vectors of antimicrobial resistance transfer. Wild birds, including corvid species can disseminate mobile genetic resistance determinants through faeces. This study aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli and Klebsiella spp. isolates obtained from winter roosting sites of American crows (Corvus brachyrhynchos) and common ravens (Corvus corax) in Canada. Faecal swabs were collected at five roosting sites across Canada. Selective media isolation and multiplex PCR screening was utilized to identify PMQR genes followed by gene sequencing, pulse-field gel electrophoresis and multilocus sequence typing to characterize isolates. Despite the low prevalence of E. coli containing PMQR (1·3%, 6/449), qnrS1, qnrB19, qnrC, oqxAB and aac(6')-Ib-cr genes were found in five sequence types (ST), including E. coli ST 131. Conversely, one isolate of Klebsiella pneumoniae contained the plasmid-mediated resistance gene qnrB19. Five different K. pneumoniae STs were identified, including two novel types. The occurrence of PMQR genes and STs of public health significance in E. coli and Klebsiella pneumoniae recovered from corvids gives further evidence of the anthropogenic derived dissemination of antimicrobial resistance determinants at the human activity-wildlife-environment interface. SIGNIFICANCE AND IMPACT OF THE STUDY: This study examined large corvids as possible vector species for the dissemination of antimicrobial resistance in indicator and pathogenic bacteria as a means to assess the anthropogenic dissemination of plasmid-mediated quinolone resistance (PMQR) genes. Although rare, PMQR genes were found among corvid populations across Canada. The clinically important Escherichia coli strain ST131 containing aac(6')-Ib-cr gene along with a four-class phenotypic antimicrobial resistance (AMR) pattern as well as one Klebsiella pneumoniae strain containing a qnrB19 gene were identified in one geographical location. Corvids are a viable vector for the circulation of PMQR genes and clinically important clones in wide-ranging environments. | 2018 | 29675942 |
| 2404 | 19 | 0.9962 | Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS((B))] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards. | 2016 | 27920760 |