RAINWATER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
811200.8558Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.201626970692
812010.8552Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.202032310121
680720.8533Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. Antibiotic resistance is common in bacterial communities and appears to be correlated with human activities. However, the source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in remote regions remains unclear. In this study, we examined the abundance of ARGs in fine particulate matter (PM(2.5)) as a carrier throughout the rainfall process (4 mm rain/h) to observe the effects of rainfall on the transmission of ARGs. The results suggested that rainwater served as a reservoir that facilitated the spread of ARGs and that wind and particulate matter (PM) concentrations might be meteorological parameters that influence the distribution of ARGs in rainwater. In addition, soil microcosm experiments were performed to investigate the influence of rainfall on antibiotic resistance in soils with different environmental backgrounds. Rainwater facilitated the proliferation of ARGs and mobile genetic elements (MGEs) from ambient air to soil, and this influence was more obvious in heavy metal-contaminated soil. This is the first study to investigate the routes by which rainfall acts as a mobile reservoir to facilitate the transmission and proliferation of ARGs, and the results indicate the potential source of ARGs in remote regions where humans rarely interfere.202134352459
812330.8531The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
787140.8530Effects of different quaternary ammonium compounds on intracellular and extracellular resistance genes in nitrification systems under the pre-contamination of benzalkyl dimethylammonium compounds. As the harm of benzalkyl dimethylammonium compounds (BACs) on human health and environment was discovered, alkyltrimethyl ammonium compound (ATMAC) and dialkyldimethyl ammonium compound (DADMAC), which belong to quaternary ammonium compounds (QACs), were likely to replace BACs as the main disinfectants. This study simulated the iterative use of QACs to explore their impact on resistance genes (RGs) in nitrification systems pre-contaminated by BACs. ATMAC could initiate and maintain partial nitrification. DADMAC generated higher levels of reactive oxygen species and lactate dehydrogenase, leading to increased biological toxicity in bacteria. The abundance of intracellular RGs of sludge was higher with the stress of QACs. DADMAC also induced higher extracellular polymeric substance secretion. Moreover, it facilitated the transfer of RGs from sludge to water, with ATMAC disseminating RGs through si-tnpA-04 and DADMAC through si-intI1. Sediminibacterium might be potential hosts for RGs. This study offered insights into disinfectant usage in the post-COVID-19 era.202539612960
812450.8526Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Copper is an important selectors for antibiotic resistance genes (ARGs) transfer because of metal-antibiotic cross-resistance and/or coresistance. Due to carbon-based materials' good adsorption capacity for heavy metals, graphene and graphene oxide have great potential to reduce ARGs abundance in the environment with copper pollution. To figure out the mechanics, this study investigated the effects of graphene and graphene oxide on the succession of ARGs, mobile genetic elements (MGEs), heavy metal resistance genes (HMRGs), and bacterial communities during copper-contained swine manure anaerobic digestion. Results showed that graphene and graphene oxide could reduce ARGs abundance in varying degrees with the anaerobic reactors that contained a higher concentration of copper. Nevertheless, graphene decreased the abundance of ARGs more effectively than graphene oxide. Phylum-level bacteria such as Firmicutes, Bacteroidetes, Spirochaetes, and Verrucomicrobiaat were significantly positively correlated with most ARGs. Network and redundancy analyses demonstrated that alterations in the bacterial community are one of the main factors leading to the changes in ARGs. Firmicutes, Bacteroidetes, and Spirochaetes were enriched lower in graphene reactor than graphene oxide in anaerobic digestion products, which may be the main reason that graphene is superior to graphene oxide in reduced ARGs abundance. Additionally, ARGs were close to HMRGs than MGEs in the treatments with graphene, the opposite in graphene oxide reactors. Therefore, we speculate that the reduction of HMRGs in graphene may contribute to the result that graphene is superior to graphene oxide in reduced ARGs abundance in anaerobic digestion.202336394812
787760.8525External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.202439153696
854570.8523Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs.202133735726
794280.8519Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.202235944782
679090.8518Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective.202539488061
8125100.8516The removal performances and evaluation of heavy metals, antibiotics, and resistomes driven by peroxydisulfate amendment during composting. This study aimed to explore the effect of peroxydisulfate on the removal of heavy metals, antibiotics, heavy metal resistance genes (HMRGs), and antibiotic resistance genes (ARGs) during composting. The results showed that peroxydisulfate achieved the passivation of Fe, Mn, Zn, and Cu by promoting their speciation variations, thus reducing their bioavailability. And the residual antibiotics were better degraded by peroxydisulfate. In addition, metagenomics analysis indicated that the relative abundance of most HMRGs, ARGs, and MGEs was more effectively down-regulated by peroxydisulfate. Network analysis confirmed Thermobifida and Streptomyces were dominant potential host bacteria of HMRGs and ARGs, whose relative abundance was also effectively down-regulated by peroxydisulfate. Finally, mantel test showed the significant effect of the evolution of microbial communities and strong oxidation of peroxydisulfate on the removal of pollutants. These results suggested that heavy metals, antibiotics, HMRGs, and ARGs shared a joint fate of being removed driven by peroxydisulfate during composting.202337307729
8117110.8516Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting.202033099099
7986120.8515Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. Surfactants are widely used as a passivating agent in heavy metal passivation process, but their effect on transformation of heavy metal fraction and reduction of heavy metal resistance genes (MRGs) in composting process is still unknown. The aim of this study was to compare the effects of two anionic surfactants (rhamnolipid and sodium dodecyl sulfate) on heavy metal passivation and resistance gene reduction in chicken manure composting. The results showed that the addition of surfactant can effectively enhance degradation of organic matter (OM). Both surfactants could effectively reduce the bioavailability of heavy metals (HMs) and the relative abundance of resistance genes, especially rhamnolipids. The potential functional bacteria affecting heavy metal passivation were identified by the changes of microbial community. Redundancy analysis (RDA) showed that protease (PRT) activity was the key factor affecting the fractions of the second group of HMs including ZnF1, CuF1, CuF2, PbF1 and PbF3. These findings indicate that addition of anionic surfactants can reduce the bioavailability of HMs and the abundance of resistance genes in compost products, which is of guiding significance for the reduction of health risks in the harmless utilization of livestock and poultry manure.202337543071
7036130.8514Role of Bentonite on the Mobility of Antibiotic Resistance Genes, and Microbial Community in Oxytetracycline and Cadmium Contaminated Soil. The effects of bentonite (BT), a commonly used heavy metal deactivator, on the ARGs and microbial communities in soils and lettuce systems contaminated by heavy metals and antibiotics are unclear. A study was conducted to investigate the effect of BT on the mobility of antibiotic resistance genes in oxytetracycline and cadmium contaminated soil. Results showed that the addition of BT reduced the accumulation of OTC and ARGs in the soil and lettuce roots, but increased the abundance of ARGs in lettuce leaves, and increase the risk of human pathogenic bacteria (HPB) transferring to lettuce leaves. Redundancy analysis showed that environmental factors (OTC, H(2)O, SOM, and pH) were the dominant factors that influence the distribution of ARGs and intI1. Network analysis showed that Proteobacteria and Bacteroidetes were the major host bacteria which caused changes in ARGs and intI1. There were significant positive correlations between ermX and ermQ, and a large number of HPB. The co-occurrence of intl1 with some ARGs (tetC, tetG, ermQ, sul1, and sul2), may threaten human health due to the dispersion of ARGs via horizontal gene transfer.201830546348
6932140.8512Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. The floating aquatic plant of Azolla imbricata has an outstanding purification capability for polluted river water, and it is also employed to improve soil fertility. However, the occurrence and distribution of antibiotic resistance genes (ARGs) in soil amended using A.imbricata remain unclear. In the soil amendment with A. imbricata, heavy metals, antibiotics, transposase genes, ARGs, and bacterial communities in the soil were determined in this study. The results indicated that the diversity of bacteria and ARGs increased, while the diversity of ARGs decreased under the amendment using an appropriate amount of A. imbricata. The Firmicutes, Chloroflexi, Actinobacteria, and Cyanobacteria were the main host bacteria of ARGs. The vertical gene transfer of ARGs was weak, and the horizontal gene transfer became the dominant transfer pathway of ARGs. The amendment with A. imbricata altered the distribution of heavy metals, antibiotics, transposase genes, ARGs, and dominant bacteria. The amendment using A. imbricata promoted the degradation of antibiotics, decreased the concentrations of available heavy metals, and eliminated the abundance of ARGs and transposase genes. Our findings suggested a comprehensive effect of multiple stresses on the fate of ARGs in soil amended with A. imbricata, providing an insight into the distribution and propagation of ARGs in soil amended using plant residues.201931351286
8113150.8511Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
7940160.8510Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
7947170.8510Molecular insights into linkages among free-floating macrophyte-derived organic matter, the fate of antibiotic residues, and antibiotic resistance genes. Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.202438653136
7898180.8507Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis.201931442759
8017190.8507Dose-Dependent Effect of Tilmicosin Residues on ermA Rebound Mediated by IntI1 in Pig Manure Compost. The impact of varying antibiotic residue levels on antibiotic resistance gene (ARG) removal during composting is still unclear. This study investigated the impact of different residue levels of tilmicosin (TIM), a common veterinary macrolide antibiotic, on ARG removal during pig manure composting. Three groups were used: the CK group (no TIM), the L group (246.49 ± 22.83 mg/kg TIM), and the H group (529.99 ± 16.15 mg/kg TIM). Composting removed most targeted macrolide resistance genes (MRGs) like ereA, ermC, and ermF (>90% removal), and reduced ermB, ermX, ermQ, acrA, acrB, and mefA (30-70% removal). However, ermA increased in abundance. TIM altered compost community structure, driving succession through a deterministic process. At low doses, TIM reduced MRG-bacteria co-occurrence, with horizontal gene transfer via intI1 being the main cause of ermA rebound. In conclusion, composting reduces many MRG levels in pig manure, but the persistence and rebound of genes like ermA reveal the complex interactions between composting conditions and microbial gene transfer.202541011454