# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7061 | 0 | 0.9806 | Dissemination of antibiotic resistance genes through soil-plant-earthworm continuum in the food production environment. Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum. | 2024 | 38101104 |
| 7073 | 1 | 0.9800 | Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff. | 2019 | 31589689 |
| 7060 | 2 | 0.9788 | Antibiotic resistance partitioning during on-farm manure separation and high temperature rotary drum composting. Manure application as fertilizer can increase environmental exposure risk, as antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistant genes (ARGs) can be transmitted to agricultural fields, and adjacent natural systems. Understanding how specific antibiotics and ARGs respond within different manure fractions during on-farm management is limited. The study objective was to conduct a mass flow analysis determining the fate of antibiotic resistance factors (antibiotics, ARGs, and ARB) through solid-liquid separation, with the solid fraction continuing through a bedding recovery unit (BRU) via high temperature rotary composting for use of the manure solids as dairy cow bedding. The results show that most of the manure mass containing the antibiotic resistance factors went untreated following solid-liquid separation, with 95% of the mass leaving the separator as a liquid and pumped to a storage lagoon for field application and 5% proceeding to BRU processing. The tetracyclines and tulathromycin sorbed to the manure solids, while the beta lactams, ampicillin, and benzylpenicilloic acid were only found in the liquid fraction. The removal of antibiotic residuals during the BRU composting was insignificant, yet 40%-73% of the antibiotics were in the liquid fraction. The BRU composting was 100% effective in removing the ARB examined. Five of the eight ARGs (intl1, sul1, tetQ, tetX, and tetM) had significant reduction (>95%) following the BRU composting treatment. While the three other ARGs (tetW, ermB, and bla2) remained constant despite treatment. This study highlighted the importance of examining manure management from a mass balance perspective and understanding antibiotic resistance risk factors. | 2025 | 39617587 |
| 6921 | 3 | 0.9788 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 8111 | 4 | 0.9788 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 7654 | 5 | 0.9787 | Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. | 2014 | 25172864 |
| 8123 | 6 | 0.9787 | The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil. | 2024 | 37907163 |
| 7133 | 7 | 0.9787 | Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research. | 2017 | 28192677 |
| 7063 | 8 | 0.9787 | Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. | 2017 | 28076772 |
| 7059 | 9 | 0.9787 | Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW. | 2023 | 36736399 |
| 7000 | 10 | 0.9786 | Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution. | 2021 | 34004530 |
| 7138 | 11 | 0.9786 | Accumulation and translocation of antibiotic resistance genes in plants cultivated in hydroponic systems with nitrified biogas slurry. Hydroponic cultivation with biogas slurry supports nutrient recycling but raises biosafety concerns due to the dissemination of antibiotic resistance genes (ARGs). This study established a hydroponic system using nitrified biogas slurry to grow lettuce and cherry radish, and systematically investigated the accumulation of ARGs, mobile genetic elements (MGEs), high-priority human pathogenic bacteria (HPBs), and virulence factors (VFs) in plant tissues. ARGs predominantly accumulated in roots (0.16 ∼ 0.23 copies/16S rRNA), significantly higher than in leaves (0.01 ∼ 0.11 copies/16S rRNA), with sul1 consistently enriched in the rhizosphere. Filtration pretreatment significantly reduced ARG and MGE levels in cherry radish roots by 30.78 % and 39.43 %, respectively (p < 0.05). ARGs strongly correlated with MGEs (R² = 0.97, p < 0.0001), indicating horizontal gene transfer as the key dissemination pathway. Co-occurrence network analysis revealed synergistic enrichment of ARGs and MGEs with HPBs and VFs, highlighting Acinetobacter baumannii and Streptococcus pneumoniae as potential core hosts. These findings demonstrate that ARG accumulation and spread in plants are affected by slurry treatment, plant species, and tissue specificity. While filtration mitigates risks, persistent ARGs in roots necessitate further monitoring. This study informs safe reuse strategies for biogas slurry in agriculture. | 2025 | 41076908 |
| 8097 | 12 | 0.9786 | Fate of antibiotic resistance genes in farmland soil applied with three different fertilizers during the growth cycle of pakchoi and after harvesting. The increasing prevalence of antibiotic resistance genes (ARGs) in the soil environment poses a serious threat to crop safety and even public health. In this study, the fate of ARGs in the soil was investigated during the growth period of pakchoi and after harvesting with the application of different kinds of fertilizers. The result showed that increasing rate of soil ARGs during the growth period of pakchoi followed the order of composted manure > commercial fertilizer > mineral fertilizer. After harvesting, soil ARGs abundance treated with mineral fertilizer, commercial fertilizer or composted manure significantly increased by 0.63, 3.19 and 8.65 times (p < 0.05), respectively, compared with the non-fertilized soil. The ARGs abundance in the pakchoi treated with composted manure was significantly higher than that of treatments with mineral fertilizer and commercial organic fertilizer. These findings indicated the application of composted pig manure would significantly increase the pollution load of ARGs in farmland soil and plant, and also promote the proliferation of farmland ARGs. Principal component analysis suggested that bacterial communities might have a significant influence on ARGs changes during the growth period of pakchoi. Network analysis further indicated ARGs changes may be mainly related to their host bacteria (including Gammaproteobacteria, Flavobacteriia and Bacilli). The results provided a proper method and useful information on reducing transmission risk of ARGs and control the propagation of ARGs in agricultural activities. | 2021 | 33865023 |
| 7991 | 13 | 0.9785 | 'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Soil contamination with antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) has becoming an emerging environmental problem. Moreover, the mixed pollutants' transfer and accumulation from soil to tuberous vegetables has posed a great threat against food security and human health. In this work, the application of two absorbing materials (maize biochar and sulfate modified eggshell) was able to reduce the poisonous effect of soil antibiotics on potato root system by stimulate the dissipation of water-soluble antibiotics in soil; and also improve food quality by increasing potato starch, protein, fat, and vitamins. Meanwhile, both amendments could effectively decrease the classes and the accumulative abundance of ARB and ARGs (sulI, sulII, catI, catII, ermA, ermB) in the edible parts of potato. The lowest abundance of ARGs was detected in the biochar application treatment, with the accumulative ARG level of 8.9 × 10(2) and 7.2 × 10(2) copies mL(-1) in potato peel (sull + catI + ermA) and tuberous root (sulI), respectively. It is the first study to demonstrate the feasibility of biochar and eggshell derived from agricultural wastes as green absorbing materials to reduce soil antibiotic, ARB, and ARGs accumulation risk in tuberous vegetable. | 2018 | 29945818 |
| 6924 | 14 | 0.9784 | Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway. | 2023 | 37928655 |
| 7132 | 15 | 0.9784 | Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing. | 2019 | 30594092 |
| 7655 | 16 | 0.9784 | Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption. | 2013 | 23851089 |
| 6926 | 17 | 0.9784 | Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application. | 2023 | 37247491 |
| 7008 | 18 | 0.9783 | Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes of bacterial communities and ARG profiles in food crops produced with contaminated soils and waters. This study examined the level and type of ARGs and bacterial community composition in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may have lower risks of producing food crops with high abundance of ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of changes were observed. MGE intl1 was consistently more abundant with pharmaceutical exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, there were significant interplays among bacteria community, antibiotic concentrations, and ARG abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ). | 2019 | 31336252 |
| 7216 | 19 | 0.9783 | Tracking antibiotic resistance through the environment near a biosolid spreading ground: Resistome changes, distribution, and metal(loid) co-selection. The application of urban wastewater treatment plants (WWTPs) products to agricultural lands has contributed to the rising level of antibiotic resistance and drawn a critical public health concern. It has not been thoroughly investigated at which spatial scales a biosolid applied area as a potentially predominant source affects surrounding soil resistomes. This study investigated distribution and impact of WWTP biosolids treated with anaerobic digestion on an agricultural area. Heterotrophic plate counts (HPCs) and quantitative polymerase chain reaction (qPCR) were performed for detection of selected antibiotic-resistant bacteria (ARB), selected antibiotic resistance genes (ARGs), intI1 genes, and 16S rRNA genes. Biosolid samples contained significantly higher levels of selected ARGs than the raw agricultural soils (p < 0.05). The average relative abundances of intI1, sul1, bla(SHV), and ermB genes were significantly higher in biosolid-amended soils than nearby agricultural soils (p < 0.05). Spatial interpolation analysis of relative gene abundances of intI1, sul1, sul2, and tetW across the studied area further indicated directional trends towards the northwest and southeast directions, highlighting possible airborne spread. Concentrations of Co, Cu, Ni, and Fe were found to be significantly and positively correlated with relative abundances of intI1, sul1, and tetW genes (p < 0.05). The resistance ratios of culturable antibiotic-resistant bacteria in agricultural soils with biosolid amendments were generally identical to those without biosolid amendments. This study will advance the understanding of the antibiotic resistome in agricultural soils impacted by long-term waste reuse and inform the evaluation strategies for future biosolids application and management. | 2022 | 35121038 |