QUANTITATION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
587600.9746Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray. We have developed an oligonucleotide microarray for the detection of biodegradative genes and bacterial diversity and tested it in five contaminated ecosystems. The array has 60-mer oligonucleotide probes comprising 14,327 unique probes derived from 1,057 biodegradative genes and 880 probes representing 110 phylogenetic genes from diverse bacterial communities, and we named it as BiodegPhyloChip. The biodegradative genes are involved in the transformation of 133 chemical pollutants. Validation of the microarray for its sensitivity specificity and quantitation were performed using DNA isolated from well-characterized mixed bacterial cultures also having non-target strains, pure degrader strains, and environmental DNA. Application of the developed array using DNA extracted from five different contaminated sites led to the detection of 186 genes, including 26 genes unique to the individual sites. Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well-characterized genera involved in biodegradation of various pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal), and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to the enzyme hydroxylases, monooxygenases, and dehydrogenases which were present in all the five samples. Thus, the array developed and validated here shall be useful in assessing not only the biodegradative potential but also the composition of environmentally useful bacteria, simultaneously, from hazardous ecosystems.201121503758
508410.9742Cloth-based hybridization array system for the identification of antibiotic resistance genes in Salmonella. A simple macroarray system based on the use of polyester cloth as the solid phase for DNA hybridization has been developed for the identification and characterization of bacteria on the basis of the presence of various virulence and toxin genes. In this approach, a multiplex polymerase chain reaction (PCR) incorporating digoxigenin-dUTP is used to simultaneously amplify different marker genes, with subsequent rapid detection of the amplicons by hybridization with an array of probes immobilized on polyester cloth and immunoenzymatic assay of the bound label. As an example of the applicability of this cloth-based hybridization array system (CHAS) in the characterization of foodborne pathogens, a method has been developed enabling the detection of antibiotic resistance and other marker genes associated with the multidrug-resistant food pathogen Salmonella enterica subsp. enterica serotype Typhimurium DT104. The CHAS is a simple, cost-effective tool for the simultaneous detection of amplicons generated in a multiplex PCR, and the concept is broadly applicable to the identification of key pathogen-specific marker genes in bacterial isolates.200718363231
247520.9734Examination of single and multiple mutations involved in resistance to quinolones in Staphylococcus aureus by a combination of PCR and denaturing high-performance liquid chromatography (DHPLC). Detection of DNA sequence variation is fundamental to the identification of the genomic basis of phenotypic variability. Denaturing high-performance liquid chromatography (DHPLC) is a novel technique that has been used to detect mutations in human DNA. We report on the first study to use this technique as a tool to detect mutations in genes encoding antibiotic resistance in bacteria. Three methicillin-sensitive and three methicillin-resistant clinical Staphylococcus aureus isolates, susceptible to ciprofloxacin (MIC Leu, Ser-112-->Pro, Glu-88-->Lys in GyrA, Glu-84-->Val, Ser-80-->Phe in GrlA, Pro-456-->Ser in GyrB and Glu-422-->Asp, Pro-451-->Ser, Asp-432-->Gly in GrlB. Mutations could be rapidly and reproducibly identified from the PCR products using DHPLC, producing specific peak patterns that correlate with genotypes. This system facilitates the detection of resistance alleles, providing a rapid (5 min per sample), economic (96 sample per run) and reliable technique for characterizing antibiotic resistance in bacteria.200212407120
506930.9733MC-PRPA-HLFIA Cascade Detection System for Point-of-Care Testing Pan-Drug-Resistant Genes in Urinary Tract Infection Samples. Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene bla(NDM) and bla(KPC), colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 10(2) CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.202337047757
222440.9733Multiplexed Signal Ion Emission Reactive Release Amplification (SIERRA) Assay for the Culture-Free Detection of Gram-Negative and Gram-Positive Bacteria and Antimicrobial Resistance Genes. The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 10(4) bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼10(5) bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to β-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).202133819029
247650.9732A Novel and Quantitative Detection Assay (effluxR) for Identifying Efflux-Associated Resistance Genes Using Multiplex Digital PCR in Clinical Isolates of Pseudomonas aeruginosa. The rise of multidrug resistance of Pseudomonas aeruginosa highlights an increased need for selective and precise antimicrobial treatment. Drug efflux pumps are one of the major mechanisms of antimicrobial resistance found in many bacteria, including P. aeruginosa. Detection of efflux genes using a polymerase chain reaction (PCR)-based system would enable resistance detection and aid clinical decision making. Therefore, we aimed to develop and optimize a novel method herein referred to as "effluxR detection assay" using multiplex digital PCR (mdPCR) for detection of mex efflux pump genes in P. aeruginosa strains. The annealing/extension temperatures and gDNA concentrations were optimized to amplify mexB, mexD, and mexY using the multiplex quantitative PCR (mqPCR) system. We established the optimal mqPCR conditions for the assay (Ta of 59 °C with gDNA concentrations at or above 0.5 ng/µL). Using these conditions, we were able to successfully detect the presence of these genes in a quantity-dependent manner. The limit of detection for mex genes using the effluxR detection assay with mdPCR was 0.001 ng/µL (7.04-34.81 copies/µL). Moreover, using blind sample testing, we show that effluxR detection assay had 100% sensitivity and specificity for detecting mex genes in P. aeruginosa. In conclusion, the effluxR detection assay, using mdPCR, is able to identify the presence of multiple mex genes in P. aeruginosa that may aid clinical laboratory decisions and further epidemiological studies.202337888028
974260.9731BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.201931173943
583170.9730Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. The gene mecA and its homologue mecC confer methicillin resistance in Staphylococcus aureus and other staphylococci. Methicillin-resistant staphylococci (MRS) are considered resistant to all β-lactam antibiotics. To avoid the use of β-lactam antibiotics for the control of MRS infections, there is an urgent need for a fast and reliable screening assay for mecA and mecC that can easily be integrated in routine laboratory diagnostics. The aim of this study was the development of such a rapid detection method for methicillin resistance based on nucleic acid lateral flow immunoassay (NALFIA) technology. In NALFIA, the target sequences are PCR-amplified, immobilized via antigen-antibody interaction and finally visualized as distinct black bars resulting from neutravidin-labeled carbon particles via biotin-neutravidin interaction. A screening of 60 defined strains (MRS and non-target bacteria) and 28 methicillin-resistant S. aureus (MRSA) isolates from clinical samples was performed with PCR-NALFIA in comparison to PCR with subsequent gel electrophoresis (PCR-GE) and real-time PCR. While all samples were correctly identified with all assays, PCR-NALFIA was superior with respect to limits of detection. Moreover, this assay allowed for differentiation between mecA and mecC by visualizing the two alleles at different positions on NALFIA test stripes. However, since this test system only targets the mecA and mecC genes, it does not allow to determine in which staphylococcal species the mec gene is included. Requiring only a fraction of the time needed for cultural methods (i.e. the gold standard), the PCR-NALFIA presented here is easy to handle and can be readily integrated into laboratory diagnostics.201727569992
519480.9730Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253
507090.9728Sequence-specific DNA solid-phase extraction in an on-chip monolith: Towards detection of antibiotic resistance genes. Antibiotic resistance of bacteria is a growing problem and presents a challenge for prompt treatment in patients with sepsis. Currently used methods rely on culturing or amplification; however, these steps are either time consuming or suffer from interference issues. A microfluidic device was made from black polypropylene, with a monolithic column modified with a capture oligonucleotide for sequence selective solid-phase extraction of a complementary target from a lysate sample. Porous properties of the monolith allow flow and hybridization of a target complementary to the probe immobilized on the column surface. Good flow-through properties enable extraction of a 100μL sample and elution of target DNA in 12min total time. Using a fluorescently labeled target oligonucleotide related to Verona Integron-Mediated Metallo-β-lactamase it was possible to extract and detect a 1pM sample with 83% recovery. Temperature-mediated elution by heating above the duplex melting point provides a clean extract without any agents that interfere with base pairing, allowing various labeling methods or further downstream processing of the eluent. Further integration of this extraction module with a system for isolation and lysis of bacteria from blood, as well as combining with single-molecule detection should allow rapid determination of antibiotic resistance.201728734608
9981100.9728High-contrast imaging of cellular non-repetitive drug-resistant genes via in situ dead Cas12a-labeled PCR. In situ imaging of genes of pathogenic bacteria can profile cellular heterogeneity, such as the emergence of drug resistance. Fluorescence in situ hybridization (FISH) serves as a classic approach to image mRNAs inside cells, but it remains challenging to elucidate genomic DNAs and relies on multiple fluorescently labeled probes. Herein, we present a dead Cas12a (dCas12a)-labeled polymerase chain reaction (CasPCR) assay for high-contrast imaging of cellular drug-resistant genes. We employed a syncretic dCas12a-green fluorescent protein (dCas12a-GFP) to tag the amplicons, thereby enabling high-contrast imaging and avoiding multiple fluorescently labeled probes. The CasPCR assay can quantify quinolone-resistant Salmonella enterica in mixed populations and identify them isolated from poultry farms.202439229640
5222110.9728Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.200919414240
5074120.9727Cas14VIDet: A visual instant method free from PAM restriction for antibiotic resistance bacteria detection. A personalized treatment strategy that selects sensitive antibiotics based on Helicobacter pylori (H. pylori) resistance genes is currently the most effective approach to address the challenge of H. pylori eradication. However, the widespread adoption of this strategy is hindered by the long processing times and high costs associated with traditional resistance gene detection methods. In this study, we combined ultra-fast PCR with CRISPR/Cas14 into a single reaction system, establishing a rapid, one-pot visual platform named Cas14VIDet (Cas14-based Visual Instant Detection) for detecting H. pylori resistance genes. Cas14VIDet does not require a PAM sequence and excels in identifying single nucleotide polymorphisms, with the detection sensitivity approaching the level of a single bacterial colony (10(0) CFU/mL). The entire detection process can be completed within 10 min, and results are directly observable with the naked eye. We validated Cas14VIDet by testing 50 clinical samples and compared it with Sanger sequencing. The results showed that Cas14VIDet achieved 100% sensitivity, 100% specificity, and 100% accuracy in detecting H. pylori resistance genes to levofloxacin. Therefore, we believe this method holds great potential for rapid detection of H. pylori resistance, potentially supporting personalized treatment of H. pylori infections in the future.202539527901
6052130.9727Safety and technological application of autochthonous Streptococcus thermophilus cultures in the buffalo Mozzarella cheese. Thermophilic and mesophilic lactic acid bacteria (LAB), such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus helveticus, and Lactococcus lactis, play a crucial role in the technological and sensory quality of Mozzarella cheese. In this study, the safety (genes encoding virulence factors and antibiotic resistance) and acidifying activity of autochthonous S. thermophilus cultures were evaluated in order to choose the most suitable strain for industrial application. The safe and good acidifying culture was tested in two buffalo Mozzarella cheese batches: Mozzarella cheeses produced with autochthonous culture (SJRP107) and commercial culture (STM5). The cultivable LAB was evaluated by culture-dependent method (plate counting) and the quantification of S. thermophilus cultures (commercial and autochthonous) were evaluated by culture-independent method RealT-qPCR (real-time quantitative polymerase chain reaction). The texture, physicochemical and proteolytic properties of the Mozzarella cheeses were similar for both batches. The nonstarter LAB count was higher during manufacture than in the storage, and the RealT-qPCR indicated the presence of S. thermophilus culture until the end of storage. S. thermophilus SJRP107 presented high potential for safety application in the production of Mozzarella cheese. Furthermore, considering the culture characteristics and their relationship with product quality, further studies could be helpful to determine their effect on the sensory characteristics of the cheese.202031948624
5095140.9727Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. Accurate quantification of bacterial species in dental plaque is needed for microbiological diagnosis of periodontal diseases. The present study was designed to assess the sensitivity, specificity and quantitativity of the real-time PCR using the GeneAmp Sequence Detection System with two fluorescence chemistries. TaqMan probe with reporter and quencher dye, and SYBR Green dye were used for sources of the fluorescence. Primers and probes were designed for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and total bacteria based on the nucleotide sequences of the respective 16S ribosomal RNA genes. Since spread of antibiotic resistance genes is one of the crucial problems in periodontal therapy, quantitative detection of tetQ gene, which confers resistance to tetracycline, was included in the examination. The detection of P. gingivalis, P. intermedia and A. actinomycetemcomitans was linear over a range of 10-10(7) cells (10-10(7) copies for tetQ gene), while the quantitative range for total bacteria was 10(2)-10(7) cells. Species-specific amplifications were observed for the three periodontal bacteria, and there was no significant difference between the TaqMan and SYBR Green chemistry in their specificity, quantitativity and sensitivity. The SYBR Green assay, which was simpler than TaqMan assay in its manipulations, was applied to the clinical plaque samples. The plaque samples were obtained from eight patients (eight periodontal pockets) before and 1 week after the local drug delivery of minocycline. Although the number of P. gingivalis, P. intermedia and A. actinomycetemcomitans markedly decreased after the antibiotic therapy in most cases, higher copy numbers of the tetQ gene were detectable. The real-time PCR demonstrated sufficient sensitivity, specificity and quantitativity to be a powerful tool for microbiological examination in periodontal disease, and the quantitative monitoring of antibiotic resistance gene accompanied with the antibiotic therapy should be included in the examination.200314557000
9999150.9727Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR. Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria.19968593053
8483160.9726Thermodynamic Surface Analyses to Inform Biofilm Resistance. Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.202033205020
5068170.9726Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
5829180.9726Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.202133970612
4777190.9725Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. The emergence of antibiotic-resistant microorganisms is a significant concern in global health. Antibiotic resistance is attributed to various virulent factors and genetic elements. This study investigated the virulence factors of Staphylococcus aureus to create an mRNA-based vaccine that could help prevent antibiotic resistance. Distinct strains of the bacteria were selected for molecular identification of virulence genes, such as spa, fmhA, lukD, and hla-D, which were performed utilizing PCR techniques. DNA extraction from samples of Staphylococcus aureus was conducted using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, which was confirmed and visualized using a gel doc; 16S rRNA was utilized to identify the bacterial strains, and primers of spa, lukD, fmhA, and hla-D genes were employed to identify the specific genes. Sequencing was carried out at Applied Bioscience International (ABI) in Malaysia. Phylogenetic analysis and alignment of the strains were subsequently constructed. We also performed an in silico analysis of the spa, fmhA, lukD, and hla-D genes to generate an antigen-specific vaccine. The virulence genes were translated into proteins, and a chimera was created using various linkers. The mRNA vaccine candidate was produced utilizing 18 epitopes, linkers, and an adjuvant, known as RpfE, to target the immune system. Testing determined that this design covered 90% of the population conservancy. An in silico immunological vaccine simulation was conducted to verify the hypothesis, including validating and predicting secondary and tertiary structures and molecular dynamics simulations to evaluate the vaccine's long-term viability. This vaccine design may be further evaluated through in vivo and in vitro testing to assess its efficacy.202337189657