QNRS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
121400.9915Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.201222731858
123310.9914Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment.202031532307
123220.9914Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains.202033317078
122930.9908Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)).202133513540
123540.9904Characterization of integrons and antimicrobial resistance genes in clinical isolates of Gram-negative bacteria from Palestinian hospitals. Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1, dfrA5, dfrA7, dfrA12, dfrA17 and dfrA25; aminoglycoside adenyltransferases, aadA1, aadA2, aadA5, aadA12 and aadB; aminoglycoside acetyltransferase, aac(6')-Ib; and chloramphenicol resistance gene, cmlA1. ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla(CTX-M-15), bla(CTX-M-56), bla(OXA-1), bla(SHV-1), bla(SHV-12), bla(SHV-32) and bla(TEM-1) genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2, which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time.200919903259
123650.9904Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.201121338385
109360.9902The rate of frequent co-existence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from retail raw chicken in South Korea. Since plasmid-encoded antibiotic resistance facilitates the emergence of antibiotic-resistant bacteria, the increasing prevalence of Escherichia coli harboring plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes is a public health concern. The objective of this study is to investigate the co-existence of PMQR and ESBL genes in E. coli isolates from retail raw chicken in South Korea. Among 67 ESBL-producing E. coli isolates from 40 retail raw chicken, more than half of them carried PMQR genes, including qnrS, aac(6')-Ib-cr, and oqxAB. The qnrS was predominantly (91.4%) detected in E. coli isolates carrying both PMQR and ESBL. The aac(6')-Ib-cr was detected in seven ESBL-producing E. coli strains, and 85.7% of the aac(6')-Ib-cr-positive strains also carried qnrS. Moreover, the strains co-harboring qnrS and aac(6')-Ib-cr exhibited increased resistance to ciprofloxacin and kanamycin. These results demonstrate that PMQR genes are frequently detected in ESBL-producing E. coli isolates from retail raw chicken in South Korea.202235646407
124070.9902Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance.202439066817
108880.9898Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.201627482752
123090.9898Lentic and effluent water of Delhi-NCR: a reservoir of multidrug-resistant bacteria harbouring blaCTX-M, blaTEM and blaSHV type ESBL genes. Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2-3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India.202134371496
1226100.9898Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene.201324450236
1190110.9897Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
1295120.9897Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas.200919168331
1091130.9897Co-harboring of cephalosporin (bla)/colistin (mcr) resistance genes among Enterobacteriaceae from flies in Thailand. The spreading of antimicrobial-resistant Enterobacteriaceae, especially those co-harboring plasmid-mediated cephalosporin (bla) and colistin (mcr) resistance genes, is becoming increasingly problematic. As a vector, flies carry antimicrobial-resistant bacteria (ARB) into human and livestock habitats. To investigate ARB in flies, we collected 235 flies from 27 sites (18 urban areas, five pig farms and four chicken farms) in Thailand during 2013-2015. Cefotaxime-resistant Enterobacteriaceae (CtxRE) and bla-positive CtxRE were isolated from 70 (29.8%) and 48 (20.4%) flies, respectively. In 93 bla-positive CtxRE isolates that included Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae from 48 flies, the most frequent bla gene was TEM (n = 62), followed by CTX-M-55 (n = 31), CTX-M-14 (n = 26), CMY-2 (n = 24) and SHV (n = 10), and 58 isolates harbored multiple types of these genes. In addition, we detected the mcr-1 (n = 1) and mcr-3 (n = 19) genes in bla-positive CtxRE isolates from 16 flies. In conjugation experiments, 10 mcr-3- and bla-positive isolates exhibited co-transfer of mcr-3 and blaTEM-1 genes. These results suggest that a relatively high proportion of flies in Thailand carries cephalosporin-resistant Enterobacteriaceae harboring co-transmissible cephalosporin and colistin resistance genes.201830010911
1216140.9897Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.202438992444
1413150.9897Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
1238160.9896Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health.202236015067
1293170.9896Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. AIMS: To determine the presence of antibiotic-resistant faecal Escherichia coli and Enterococcus spp. in feral pigeons (Columba livia forma domestica) in the Czech Republic. METHODS AND RESULTS: Cloacal swabs of feral pigeons collected in the city of Brno in 2006 were cultivated for antibiotic-resistant E. coli. Resistance genes, class 1 and 2 integrons, and gene cassettes were detected in resistant isolates by polymerase chain reaction (PCR). The samples were also cultivated for enterococci. Species status of enterococci isolates was determined using repetitive extragenic palindromic-PCR. Resistance genes were detected in resistant enterococci by PCR. E. coli isolates were found in 203 of 247 pigeon samples. Antibiotic resistance was recorded in three (1·5%, n(E. coli) =203) isolates. Using agar containing ciprofloxacin, 12 (5%, n(samples) =247) E. coli strains resistant to ciprofloxacin were isolated. No ESBL-producing E. coli isolates were detected. A total of 143 enterococci were isolated: Ent. faecalis (36 isolates), Ent. faecium (27), Ent. durans (19), Ent. hirae (17), Ent. mundtii (17), Ent. gallinarum (12), Ent. casseliflavus (12) and Ent. columbae (3). Resistance to one to four antibiotics was detected in 45 (31%) isolates. Resistances were determined by tetK, tetL, tetM, tetO, aac(6')aph(2''), ant(4')-Ia, aph(3')-IIIa, ermB, pbp5, vanA and vanC1 genes. CONCLUSIONS: Antibiotic-resistant E. coli and Enterococcus spp. occurred in feral pigeons in various prevalences. SIGNIFICANCE AND IMPACT OF THE STUDY: Feral pigeon should be considered a risk species for spreading in the environment antimicrobial resistant E. coli and enterococci.201020602656
1067180.9894Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.201526042965
1311190.9894Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, bla(TEM), bla(CTX-M), and bla(SHV) were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase-producing E. coli was further subtyped to be bla(CTX-M-15), bla(CTX-M-104), bla(TEM-1), and bla(SHV-12). The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria.201829323530