QNRC1 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
80200.8683YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. Previous results have demonstrated that the silencing of adjacent genes encoding NADPH-dependent furfural oxidoreductases (yqhD dkgA) is responsible for increased furfural tolerance in an E. coli strain EMFR9 [Miller et al., Appl Environ Microbiol 75:4315-4323, 2009]. This gene silencing is now reported to result from the spontaneous insertion of an IS10 into the coding region of yqhC, an upstream gene. YqhC shares homology with transcriptional regulators belonging to the AraC/XylS family and was shown to act as a positive regulator of the adjacent operon encoding YqhD and DkgA. Regulation was demonstrated by constructing a chromosomal deletion of yqhC, a firefly luciferase reporter plasmid for yqhC, and by a direct comparison of furfural resistance and NADPH-dependent furfural reductase activity. Closely related bacteria contain yqhC, yqhD, and dkgA orthologs in the same arrangement as in E. coli LY180. Orthologs of yqhC are also present in more distantly related Gram-negative bacteria. Disruption of yqhC offers a useful approach to increase furfural tolerance in bacteria.201120676725
81510.8676The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Three different, independently isolated mercury-resistance-conferring plasmids, pMER327/419, pMER330 and pMER05, from cultures originating from the river Mersey (UK), contain identical regulatory merR genes and transposon ends. The mer determinant from pMER327/419 contains an additional potential ORF (ORF F) located between merP and merA when compared with the archetypal Tn501. Although these plasmids confer narrow-spectrum resistance (resistance to Hg2+, but not organomercurials) their merR genes encode a potential organomercurial-sensing protein. Transposition of the mer of pMER05 into plasmid RP4 was demonstrated and, as with Tn502 and Tn5053, insertion occurred at a specific region. The sequence of pMER05 is identical at the 'left' and 'right' termini and across merR to Tn5053, which was independently isolated from the chromosome of a Xanthomonas sp. bacteria from the Khaidarkan mercury mine in Kirgizia, former Soviet Union [Kholodii et al., J. Mol. Biol. 230 (1993a) 1103-1107]. The transpositional unit of pMER05 is, like that of Tn5053, bounded by DNA homologous to the imperfect 25-bp inverted repeats (IR) of the In2 integron, which brackets antibiotic-resistance cassettes in Tn21 subgroup transposons. At one end of the transposable element, and internal to the In2-like IR, is a 38-bp IR which closely resembles the IR that bounds Tn21.19948063107
10220.8670Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.19853883148
601130.8654Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon.201526204235
298340.8654Plasmid copy number and qnr gene expression in selection of fluoroquinolone-resistant Escherichia coli. Fluoroquinolone resistance in Enterobacteriales is developed by chromosomal and plasmid-mediated mechanisms. Plasmids play an important role in dissemination of resistant genes and they carry genes that protect bacteria in different stress-induced situations. In this study, we studied Escherichia coli strains, each carried one plasmid-mediated quinolone resistance determinant namely, qnrA1, qnrB1, qnrC1, and qnrD1. We exposed 0.5 McFarland density of each strain to 0.5 mg/L ciprofloxacin from the period of 30, 60, 90, and 120 min over 24 h. All treated strains were further exposed to a constantly increasing 1, 2, 4, and 8 mg/L ciprofloxacin solution through 24, 48, and 120 h. In given timepoints, RNA was extracted from all treated strains. Expression of qnrA1, qnrB1, qnrC1, and qnrD1 was investigated by quantitative PCR. Mutations in gyrA and parC genes were analyzed by PCR and nucleic acid sequencing. In this study, during 0.5 mg/L ciprofloxacin exposition, the following expression levels were detected: 1.2 for qnrA1, 1.47 for qnrD1, 12.44 for qnrC1, and 80.63 for qnrB1. In case of long-term study, we selected a resistant strain in qnrB1-positive E. coli, and its expression increased from 105.91 to 212.31. On the contrary, plasmid copy number increased in time from 1 to 4.13. No mutations in gyrA or in parC chromosomal genes of treated strains were detected. Our results show that qnrB1-positive E. coli strain was able to develop fluoroquinolone resistance by upregulated qnrB1 expression that was linked to a minor increase in plasmid copy number but no mutations occurred in gyrA or parC.201930465448
522250.8649Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.200919414240
600760.8645Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.202134332149
601270.8642Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains. Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu(2+) and 0.2 M Zn(2+) were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn(2+) from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu(2+) showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn(2+) did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu(2+) transport of A. ferrooxidans strains.201425023638
121480.8641Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.201222731858
50390.8631Interaction of the chromosomal Tn 551 with two thermosensitive derivatives, pS1 and p delta D, of the plasmid pI9789 in Staphylococcus aureus. The plasmid pI9789::Tn552 carries genes conferring resistance to penicillins and to cadmium, mercury and arsenate ions. The presence of Tn551 at one location in the chromosome of Staphylococcus aureus enhances the frequency of suppression of thermosensitivity of replication of the plasmids pS1 and p delta D which are derivatives of pI9789::Tn552. Bacteriophage propagated on the bacteria in which thermosensitivity of replication had been suppressed was used to transduce cadmium resistance to S. aureus PS80N. The cadmium-resistant transductants obtained carried plasmid pS1 or p delta D with a copy of Tn551 inserted into a specific site on pS1 but into several different sites on p delta D. The possible mechanisms of the suppression are discussed.19957758929
803100.8631Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus.19921624446
2447110.8631Mutational analysis of quinolone resistance in the plasmid-encoded pentapeptide repeat proteins QnrA, QnrB and QnrS. OBJECTIVES: Pentapeptide repeat proteins (PRPs) QnrA, QnrB and QnrS confer reduced susceptibility to quinolones. This study presents an in vitro analysis of the genetic evolution of quinolone resistance mediated by changes in the coding sequences and promoter regions of qnrA1, qnrS1 and qnrB1 genes. METHODS: A random mutagenesis technique was used to predict the evolutionary potential of these PRPs against nalidixic acid and fluoroquinolones. After comparing the amino acid sequences of these and other PRPs protecting bacteria from quinolone activity, several conserved positions were found. The role of these residues in their effect against quinolones was evaluated by site-directed mutagenesis. RESULTS: Three different phenotypes (similar resistance, higher resistance or lower resistance to quinolones) were obtained in the random mutagenesis assays when compared with wild-type phenotypes. Only one mutant increased quinolone resistance: QnrS1 containing D185Y substitution (4-fold for ciprofloxacin). Using site-directed mutagenesis, residues G56, C72, C92, G96, F114, C115, S116, A117 and L159, according to the sequence of QnrA1, were analysed and despite the wide amino acid variability of the PRPs, most conserved residues analysed were critical to QnrA1, QnrB1 and QnrS1. CONCLUSIONS: Amino acid sequences of PRPs QnrA1, QnrB1 and QnrS1 could be already optimized for quinolone resistance. One or several changes appear to be insufficient to obtain variants producing fluoroquinolone clinical resistance (MIC > 1 mg/L). Critical residues for quinolone resistance in PRPs were described. Interestingly, different effects were observed for QnrA1, QnrB1 and QnrS1 with the same substitution in several positions.200919357158
460120.8631Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.200111343129
2446130.8622Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. OBJECTIVES: To investigate mutations in the type II topoisomerase genes in quinolone-resistant mutants selected from bacteria harbouring plasmid-borne qnr genes. METHODS: Mutants were selected by nalidixic acid, ciprofloxacin and moxifloxacin from two Escherichia coli reference strains and corresponding transconjugants harbouring qnrA1, qnrA3, qnrB2 or qnrS1 genes. RESULTS: The proportion of resistant mutants selected by the three quinolones was, respectively, in the same range for qnr-positive transconjugants and reference strains. Only 20% (65/329) of the mutants selected from the transconjugants showed a gyrase mutation, whereas 79% (94/119) of those from the reference strains without a qnr gene did (P < 0.0001). At four times the MIC of the selector quinolone, gyrA mutants represented 49% and 95% of the mutants selected with nalidixic acid, 4% and 94% with ciprofloxacin and 0% and 54% with moxifloxacin for qnr-positive transconjugants and reference strains, respectively. Mutations within gyrA were distributed at codon 87 (D87G, H, N or Y) and at codon 83 (S83L) with three novel mutations (gyrA Ser83stop, gyrA Asp82Asn and gyrB insertion of Glu at 465) and three rare mutations (gyrA Gly81Asp, gyrA Asp82Gly and gyrA Ser431Pro), mainly obtained from reference strains after moxifloxacin selection. Strikingly, none of the mutants selected by moxifloxacin from qnr-positive transconjugants harboured a mutation in the topoisomerase genes. CONCLUSIONS: Topoisomerase mutants are rarely selected by ciprofloxacin and moxifloxacin from strains harbouring qnr. This suggests that the quinolone resistance-determining region domains are protected from quinolones by the Qnr protein and consequently other mechanisms are developed to acquire a further step of fluoroquinolone resistance.200818325893
5843140.8620Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Six strains of Enterococcus faecalis (S1, S12, S17, S18, S19 and S32) were isolated from copper fed pigs in Denmark. These Gram-positive bacteria within the genus Enterococcus are able to survive a variety of physical and chemical challenges by the acquisition of diverse genetic elements. The genome of strains S1, S12, S17, S18, S19 and S32 contained 2,615, 2,769, 2,625, 2,804, 2,853 and 2,935 protein-coding genes, with 41, 42, 27, 42, 32 and 44 genes encoding antibiotic and metal resistance, respectively. Differences between Cu resistant and sensitive E. faecalis strains, and possible co-transfer of Cu and antibiotic resistance determinants were detected through comparative genome analysis.201526203344
574150.8619Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression. Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.201322961447
817160.8619Mercury resistance transposons in Bacilli strains from different geographical regions. A total of 65 spore-forming mercury-resistant bacteria were isolated from natural environments worldwide in order to understand the acquisition of additional genes by and dissemination of mercury resistance transposons across related Bacilli genera by horizontal gene movement. PCR amplification using a single primer complementary to the inverted repeat sequence of TnMERI1-like transposons showed that 12 of 65 isolates had a transposon-like structure. There were four types of amplified fragments: Tn5084, Tn5085, Tn(d)MER3 (a newly identified deleted transposon-like fragment) and Tn6294 (a newly identified transposon). Tn(d)MER3 is a 3.5-kb sequence that carries a merRETPA operon with no merB or transposase genes. It is related to the mer operon of Bacillus licheniformis strain FA6-12 from Russia. DNA homology analysis shows that Tn6294 is an 8.5-kb sequence that is possibly derived from Tn(d)MER3 by integration of a TnMERI1-type transposase and resolvase genes and in addition the merR2 and merB1 genes. Bacteria harboring Tn6294 exhibited broad-spectrum mercury resistance to organomercurial compounds, although Tn6294 had only merB1 and did not have the merB2 and merB3 sequences for organomercurial lyases found in Tn5084 of B. cereus strain RC607. Strains with Tn6294 encode mercuric reductase (MerA) of less than 600 amino acids in length with a single N-terminal mercury-binding domain, whereas MerA encoded by strains MB1 and RC607 has two tandem domains. Thus, Tn(d)MER3 and Tn6294 are shorter prototypes for TnMERI1-like transposons. Identification of Tn6294 in Bacillus sp. from Taiwan and in Paenibacillus sp. from Antarctica indicates the wide horizontal dissemination of TnMERI1-like transposons across bacterial species and geographical barriers.201626802071
5223170.8613Cloned ermTR Gene Confers Low Level Erythromycin but High Level Clindamycin Resistance in Streptococcus pyogenes NZ131. Objectives: The most common macrolide resistance mechanisms in streptococci are the presence of methylase encoding genes ermB and ermTR or the presence of efflux encoded by mef genes. In the present study we aimed to show the effects of the ermTR gene under isogenic conditions on the activities of macrolides and lincosamides in streptococci. Materials and Methods: Total DNA was extracted from Streptococcus pyogenes C1, and the ermTR gene was amplified with or without the regulatory region using modified primer with insertion of restriction sites to clone in to pUC18. Transformants were selected after electroporation of Escherichia coli DB10. The recombinant plasmids were purified and merged to pJIM2246 to transform Gram positive bacteria. Recombinant pJIM2246 plasmids with the ermTR gene were then introduced into S. pyogenes NZ131 by electroporation. Results: After transformation with ermTR without regulatory region the minimal inhibitory concentration (MIC) for erythromycin and clindamycin increased from ≤0.06 to ≤0.06 to 8 and >128 mg/L, respectively. Induction with erythromycin affected the MICs for clindamycin of S. pyogenes transformed with ermTR with the regulatory region. Double disk testing showed that induction with erythromycin and azithromycin for the S. pyogenes transformed with ermTR, and regulatory regions decreased the clindamycin inhibition zone but not telithromycin. The ermTR gene in isogenic conditions confers low level resistance to erythromycin and high level resistance to clindamycin. Conclusion: The different induction and resistance profiles of ermTR compared to other erm genes suggest that the methylation of ErmTR may be different than well studied methylases.202031971866
407180.8612Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.19921328813
494190.8612The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments.19968932707