QAC - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
636600.9924Fluorinated Beta-diketo Phosphorus Ylides Are Novel Efflux Pump Inhibitors in Bacteria. BACKGROUND: One of the most important resistance mechanisms in bacteria is the increased expression of multidrug efflux pumps. To combat efflux-related resistance, the development of new efflux pump inhibitors is essential. MATERIALS AND METHODS: Ten phosphorus ylides were compared based on their MDR-reverting activity in multidrug efflux pump system consisting of the subunits acridine-resistance proteins A and B (AcrA and AcrB) and the multidrug efflux pump outer membrane factor TolC (TolC) of Escherichia coli K-12 AG100 strain and its AcrAB-TolC-deleted strain. Efflux inhibition was assessed by real-time fluorimetry and the inhibition of quorum sensing (QS) was also investigated. The relative gene expression of efflux QS genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. RESULTS: The most potent derivative was Ph(3)P=C(COC(2)F(5))CHO and its effect was more pronounced on the AcrAB-TolC-expressing E. coli strain, furthermore the most active compounds, Ph(3)P=C(COCF(3))OMe, Ph(3)P=C(COC(2)F(5))CHO and Ph(3)P=C(COCF(3))COMe, reduced the expression of efflux pump and QS genes. CONCLUSION: Phosphorus ylides might be valuable EPI compounds to reverse efflux related MDR in bacteria.201627815466
361910.9919Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Samples of effluent and soil were collected from a reed bed system used to remediate liquid waste from a wool finishing mill with a high use of quaternary ammonium compounds (QACs) and were compared with samples of agricultural soils. Resistance quotients of aerobic gram-negative and gram-positive bacteria to ditallowdimethylammomium chloride (DTDMAC) and cetyltrimethylammonium bromide (CTAB) were established by plating onto nutrient agar containing 5 microg/ml or 50 microg/ml DTDMAC or CTAB. Approximately 500 isolates were obtained and screened for the presence of the intI1 (class 1 integrase), qacE (multidrug efflux), and qacE Delta1 (attenuated qacE) genes. QAC resistance was higher in isolates from reed bed samples, and class 1 integron incidence was significantly higher for populations that were preexposed to QACs. This is the first study to demonstrate that QAC selection in the natural environment has the potential to coselect for antibiotic resistance, as class 1 integrons are well-established vectors for cassette genes encoding antibiotic resistance.200515855499
637120.9919Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections.201829464798
637230.9916Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials.202034394224
361840.9914The role of the qacA gene in mediating resistance to quaternary ammonium compounds. Conditions facilitating resistance to quaternary ammonium compounds (QACs) were investigated in Staphylococcus aureus SK982 exposed to benzalkonium chloride (BAC; a member of QACs) under various circumstances. S. aureus SK982 carrying the qacA gene encoding for resistance to QACs was grown in the presence of stable or gradually increasing concentrations of BAC, or it was exposed to this antiseptic in the exponential phase of growth. Bacteria cultivated in the highest BAC concentrations that did not retard their growth comparing to the untreated control were subjected to real-time quantitative polymerase chain reaction analysis for relative expression of the efflux genes qacA and norA. Under such conditions, S. aureus SK982 tolerated a relatively low stable concentration of BAC (1.22 mg/L) when compared with a gradually increasing antiseptic concentration (tolerance of 4.88 mg/L). However, in both cases, qacA expression was not significant. The culture exposed in the exponential phase of growth tolerated the highest concentration of BAC (9.76 mg/L) as also accompanied by significant overexpression of qacA. Expression of norA was relatively low regardless of the conditions tested. It seems that under the short-term conditions, the phase of bacterial growth is more important for the expression of BAC resistance than the capability to adapt to this antiseptic. This study provides a deeper insight into the relevance of the qac genes in conferring resistance to QACs.201323256651
233750.9914Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. BACKGROUND: Although antiseptics are some of the most widely used antibacterials in hospitals, there is very little information on reduced susceptibility to these biocides and its relationship with resistance to antibiotics. AIM: To determine the relationship between reduced susceptibility to biocides and the carriage of antiseptic resistance genes, cepA, qacΔE and qacE, as well as identifying the role of efflux pumps in conferring reduced susceptibility. METHODS: Susceptibility was assessed for five biocides: chlorhexidine, benzalkonium chloride, Trigene, MediHex-4, Mediscrub; and for 11 antibiotics against 64 isolates of Klebsiella pneumoniae. Susceptibility to all compounds was tested by the agar double dilution method (DDM) and the effect of efflux pumps on biocides determined by repeating the susceptibility studies in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The presence of the cepA, qacΔE and qacE genes was identified by polymerase chain reaction. FINDINGS: The bacteria were not widely antibiotic resistant though a few showed reduced susceptibility to cefoxitin, chloramphenicol and rifampicin and later-generation cephalosporins but not to carbapenems. Biocide susceptibility, tested by DDM, showed that 50, 49 and 53 strains had reduced susceptibility to chlorhexidine, Trigene and benzalkonium chloride, respectively. The antiseptic resistance genes cepA, qacΔE and qacE were found in 56, 34 and one isolates respectively and their effects as efflux pumps were determined by CCCP (10 mg/L), which decreased the minimum inhibitory concentrations (MICs) of chlorhexidine and Medihex-4 by 2-128-fold but had no impact on the MICs of benzalkonium chloride, Trigene and Mediscrub. CONCLUSION: There was a close link between carriage of efflux pump genes, cepA, qacΔE and qacE genes and reduced biocide susceptibility, but not antibiotic resistance, in K. pneumoniae clinical isolates.201222498639
242260.9914Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. (1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.202439200049
361170.9912Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. The antibacterial effect of disinfectants is crucial for the control of Listeria monocytogenes in food processing environments. Tolerance of L. monocytogenes to sublethal levels of disinfectants based on quaternary ammonium compounds (QAC) is conferred by the resistance determinants qacH and bcrABC. The presence and distribution of these genes have been anticipated to have a role in the survival and growth of L. monocytogenes in food processing environments where QAC based disinfectants are in common use. In this study, a panel of 680 L. monocytogenes from nine Norwegian meat- and salmon processing plants were grouped into 36 MLVA profiles. The presence of qacH and bcrABC was determined in 101 isolates from the 26 most common MLVA profiles. Five MLVA profiles contained qacH and two contained bcrABC. Isolates with qacH and bcrABC showed increased tolerance to the QAC Benzalkonium chloride (BC), with minimal inhibitory concentrations (MICs) of 5-12, 10-13 and <5ppm for strains with qacH (two allele variants observed), bcrABC, and neither gene, respectively. Isolates with qacH or bcrABC were not more tolerant to BC in bactericidal tests in suspension or in biofilms compared with isolates lacking the genes. Water residue samples collected from surfaces in meat processing plants after QAC disinfection had bactericidal effect against L. monocytogenes when the sample BC levels were high (>100ppm). A sample with lower BC concentrations (14ppm of chain length C-12 and 2.7ppm of chain length C-14) inhibited growth of L. monocytogenes not containing bcrABC or qacH, compared to strains with these genes. The study has shown that L. monocytogenes harbouring the QAC resistance genes qacH and bcrABC are prevalent in the food industry and that residuals of QAC may be present in concentrations after sanitation in the industry that result in a growth advantage for bacteria with such resistance genes.201727810443
228380.9911Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. Clinical isolates of Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia were tested for resistance to antibiotics and to the antiseptics benzalkonium chloride and cetyltrimethylammonium bromide. Furthermore, they were examined for the presence of the resistance genes qacE and qacEDelta1. qacEDelta1 was detected by PCR in 10% of all (n=103) and in 81% of multiply antibiotic-resistant strains (n=15). qacE was found in only one of 37 P. aeruginosa strains. The minimum inhibitory concentrations of benzalkonium chloride, cetyltrimethylammonium bromide, and ethidium bromide were not significantly different for qacEDelta1/qacE-positive or -negative strains. Our data indicate that multiply antibiotic-resistant Gram-negative bacteria are not necessarily more resistant to quaternary ammonium compounds than antibiotic-sensitive strains even though qacE or qacEDelta1 is present.200010650208
233890.9911Characterization of disinfectant susceptibility profiles among clinical isolates of Acinetobacter baumannii in Ardabil, Iran. Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL-1, chlorhexidine digluconate 8-64 μg mL-1, triclosan 1-32 μg mL-1, and formaldehyde 128 μg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 μg mL-1, each one) and triclosan (4 μg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates.202338063878
6373100.9910Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.201627247772
9038110.9910Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. The high tolerance of biofilm-grown Burkholderia cepacia complex bacteria against antimicrobial agents presents considerable problems for the treatment of infected cystic fibrosis patients and the implementation of infection control guidelines. In the present study, we analyzed the tolerance of planktonic and sessile Burkholderia cenocepacia J2315 cultures and examined the transcriptional response of sessile cells to treatment with chlorhexidine. At low (0.0005%) and high (0.05%) concentrations, chlorhexidine had a similar effect on both populations, but at intermediate concentrations (0.015%) the antimicrobial activity was more pronounced in planktonic cultures. The exposure of sessile cells to chlorhexidine resulted in an upregulation of the transcription of 469 (6.56%) and the downregulation of 257 (3.59%) protein-coding genes. A major group of upregulated genes in the treated biofilms encoded membrane-related and regulatory proteins. In addition, several genes coding for drug resistance determinants also were upregulated. The phenotypic analysis of RND (resistance-nodulation-division) efflux pump mutants suggests the presence of lifestyle-specific chlorhexidine tolerance mechanisms; efflux system RND-4 (BCAL2820-BCAL2822) was more responsible for chlorhexidine tolerance in planktonic cells, while other systems (RND-3 [BCAL1672-BCAL1676] and RND-9 [BCAM1945-BCAM1947]) were linked to resistance in sessile cells. After sessile cell exposure, multiple genes encoding chemotaxis and motility-related proteins were upregulated in concert with the downregulation of an adhesin-encoding gene (BCAM2143), suggesting that sessile cells tried to escape the biofilm. We also observed the differential expression of 19 genes carrying putative small RNA molecules, indicating a novel role for these regulatory elements in chlorhexidine tolerance.201121357299
5655120.9909Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. BACKGROUND: The prevalence of disinfectant resistance in Pseudomonas aeruginosa is on the rise. P. aeruginosa is the most common bacteria isolated from cases of microbial keratitis. Many multi-purpose contact lens disinfectant solutions are available to decontaminate contact lenses before use and to help reduce the incidence of infections. However, with increasing disinfectant resistance, the effect of multi-purpose disinfectant solutions may diminish. The goal of this study was to examine genes associated with disinfectant resistance in ocular isolates of P. aeruginosa and understand the strain's susceptibility to different multipurpose disinfectant solutions. METHODS: Seven potential disinfectant resistance genes were used in BLASTn searches against the whole genomes of 13 eye isolates of P. aeruginosa. A microdilution broth method was used to examine susceptibility to four different multipurpose disinfectant solutions. RESULTS: All strains possessed the sugE2, sugE3 and emrE (qacE) genes. The sugE1 and qacEdelta1 genes were present in 6/13 isolates. No strains contained the qacF or qacG genes. All tested disinfectant solutions had the ability to kill all test strains at 100% concentration, with some strains being susceptible at 1:8 dilutions of the disinfecting solutions. However, the presence of disinfectant resistance genes was not associated with susceptibility to multi-purpose disinfectants. CONCLUSION: All four tested contact lens disinfectant preparations are effective against P. aeruginosa isolates regardless of the presence of disinfectant resistance genes.201830326554
6253130.9909The Contribution of Efflux Pumps in Mycobacterium abscessus Complex Resistance to Clarithromycin. The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria.201931540480
2277140.9908Impact of marbofloxacin administration on the emergence of marbofloxacin-resistant E. coli in faecal flora of goats and elucidation of molecular basis of resistance. OBJECTIVES: The level of resistance immediately prior to slaughter in food-producing animals is of great public health significance because of likely transmission of resistant bacteria via the food chain. METHODS: Marbofloxacin was administered to goats at the dose of 2 mg/kg body weight by intramuscular route for 5 days. Faecal Escherichia coli population was monitored and examined for bacteriological procedures. DNA sequencing of gyrA and parC genes was performed to identify mutations at quinolone-resistance determining region, and interaction between marbofloxacin and GyrA was studied by in silico docking. E. coli isolates were screened for plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, aac(6')Ib-cr, qepA, oqxA and oqxB. Efflux pump-mediated resistance was evaluated by ethidium bromide assay, reduction in minimum inhibitory concentration (MIC) values in the presence of efflux pump inhibitors and relative expression of AcrAB-TolC efflux pump. RESULTS: During the treatment period, emergence of marbofloxacin-resistant E. coli strains was observed in gut flora. Quinolone resistance determining regions (QRDRs) in gyrA identified amino acid codon mutations Ser83Leu and Asp87Asn, and Ser80Ile in parC. Docking analysis implied that marbofloxacin could not form strong complexes with mutated DNA-gyrase. A high prevalnce of PMQR genes, especially qnrS, was observed along with overexpression of AcrAB-TolC efflux pump. CONCLUSIONS: The study highlighted the high prevalence of transferable mechanisms of quinolone resistance and over expression of efflux pumps in marbofloxacin-resistant E. coli isolates apart from classic QRDR mutations. The present study recommends to consider the period of dominance of resistant commensals, being excreted by animals during the antimicrobial treatments, while formulating the withdrawal period for drugs, especially in food-producing animals.202032302733
2285150.9908Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.200818720500
4766160.9907Evaluation of ethanol and EDTA concentrations in the expression of biofilm-producing smf-1, rpfF genes in XDR clinical isolates of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia is able to cause infections in immunocompromised patients, and the treatment of this opportunistic pathogen is complicated due to its virulence factors, antibiotic resistance, and the ability of the bacteria to produce biofilm. The main goals of this study were to assess the susceptibility of extensively drug-resistant (XDR) isolates to ethanol and EDTA, and evaluating the synergistic effect of these disinfectants, and also survey the effect of exposure to sub-inhibitory concentrations of ethanol and EDTA on the expression of biofilm-producing smf-1, rpfF genes. RESULTS: The results showed that EDTA significantly increased the effectiveness of the ethanol and have a synergistic effect. All of the 10 XDR isolates included in the current study harbored smf-1 and rpfF genes and produced biofilm. After exposure to MIC, sub-MIC, synergism, and sub-synergism of ethanol and EDTA, the expression of smf-1 and rpfF genes was repressed significantly. CONCLUSION: In the current study, it was indicated that the expression of biofilm-producing genes was repressed when bacteria are exposed to different concentrations of ethanol and EDTA. Future studies should include more complex microbial communities residing in the hospitals, and more disinfectants use in hospitals. Expression of other virulence genes in different conditions is suggested.202337775770
6359170.9907Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3-4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3-4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.201829615732
6370180.9907Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs.201829845191
5170190.9907Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BACKGROUND: Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism. RESULTS: The minimal inhibitory concentrations (MICs) of glutaraldehyde andexpression of imp/ostA RNA in 11 clinical isolates from the National Taiwan University Hospital were determined. After glutaraldehyde treatment, RNA expression in the strains with the MICs of 4-10 microg/ml was higher than that in strains with the MICs of 1-3 microg/ml. We examined the full-genome expression of strain NTUH-S1 after glutaraldehyde treatment using a microarray and found that 40 genes were upregulated and 31 genes were downregulated. Among the upregulated genes, imp/ostA and msbA, two putative lipopolysaccharide biogenesis genes, were selected for further characterization. The sensitivity to glutaraldehyde or hydrophobic drugs increased in both of imp/ostA and msbA single mutants. The imp/ostA and msbA double mutant was also hypersensitive to these chemicals. The lipopolysaccharide contents decreased in individual imp/ostA and msbA mutants and dramatically reduced in the imp/ostA and msbA double mutant. Outer membrane permeability assay demonstrated that the imp/ostA and msbA double mutation resulted in the increase of outer membrane permeability. Ethidium bromide accumulation assay demonstrated that MsbA was involved in efflux of hydrophobic drugs. CONCLUSION: The expression levels of imp/ostA and msbA were correlated with glutaraldehyde resistance in clinical isolates after glutaraldehyde treatment. Imp/OstA and MsbA play a synergistic role in hydrophobic drugs resistance and lipopolysaccharide biogenesis in H. pylori.200919594901