# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 454 | 0 | 0.9448 | Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Two large tetracycline resistance (TcR) plasmids have been completely sequenced, the pTet plasmid (45.2 kb) from Campylobacter jejuni strain 81-176 and a plasmid pCC31 (44.7 kb) from Campylobacter coli strain CC31 that was isolated from a human case of severe gastroenteritis in the UK. Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence and overall gene organization. Several predicted proteins encoded by genes involved in conjugation showed highest homology to proteins found in Actinobacillus actinomycetemcomitans, a periodontal pathogen. In addition to replication- and conjugation-associated genes, both plasmids carried a tet(O) gene encoding tetracycline resistance, a 6 kb ORF encoding a putative methylase and a number of genes of unknown function. The pTet plasmid co-exists in C. jejuni strain 81-176 with a smaller, previously characterized, non-conjugative plasmid pVir that also encodes a type IV secretion system (T4SS) that may affect virulence. In contrast, the T4SS encoded by pTet and pCC31 are shown to mediate bacterial conjugation between Campylobacter. The possible origin and evolution of pCC31 and pTet is discussed. | 2004 | 15470128 |
| 3061 | 1 | 0.9429 | Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. | 2014 | 25296446 |
| 822 | 2 | 0.9428 | Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains. | 2013 | 23148020 |
| 5382 | 3 | 0.9418 | Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals. | 2017 | 29148379 |
| 5142 | 4 | 0.9417 | Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS: The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION: Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances. | 2016 | 27769168 |
| 525 | 5 | 0.9417 | New insights into the metabolic potential of the phototrophic purple bacterium Rhodopila globiformis DSM 161(T) from its draft genome sequence and evidence for a vanadium-dependent nitrogenase. Rhodopila globiformis: is the most acidophilic anaerobic anoxygenic phototrophic purple bacterium and was isolated from a warm acidic sulfur spring in Yellowstone Park. Its genome is larger than genomes of other phototrophic purple bacteria, containing 7248 Mb with a G + C content of 67.1% and 6749 protein coding and 53 RNA genes. The genome revealed some previously unknown properties such as the presence of two sets of structural genes pufLMC for the photosynthetic reaction center genes and two types of nitrogenases (Mo-Fe and V-Fe nitrogenase), capabilities of autotrophic carbon dioxide fixation and denitrification using nitrite. Rhodopila globiformis assimilates sulfate and utilizes the C1 carbon substrates CO and methanol and a number of organic compounds, in particular, sugars and aromatic compounds. It is among the few purple bacteria containing a large number of pyrroloquinoline quinone-dependent dehydrogenases. It has extended capacities to resist stress by heavy metals, demonstrates different resistance mechanisms to antibiotics, and employs several toxin/antitoxin systems. | 2018 | 29423563 |
| 5146 | 6 | 0.9417 | Physiological and genomic characterization of Lactiplantibacillus plantarum isolated from Indri indri in Madagascar. AIMS: Indri indri is a lemur of Madagascar which is critically endangered. The analysis of the microbial ecology of the intestine offers tools to improve conservation efforts. This study aimed to achieve a functional genomic analysis of three Lactiplantibacillus plantarum isolates from indris. METHODS AND RESULTS: Samples were obtained from 18 indri; 3 isolates of Lp. plantarum were obtained from two individuals. The three isolates were closely related to each other, with <10 single nucleotide polymorphisms, suggesting that the two individuals shared diet-associated microbes. The genomes of the three isolates were compared to 96 reference strains of Lp. plantarum. The three isolates of Lp. plantarum were not phenotypically resistant to antibiotics but shared all 17 genes related to antimicrobial resistance that are part of the core genome of Lp. plantarum. The genomes of the three indri isolates of Lp. plantarum also encoded for the 6 core genome genes coding for enzymes related to metabolism of hydroxybenzoic and hydroxycinnamic acids. The phenotype for metabolism of hydroxycinnamic acids by indri isolates of Lp. plantarum matched the genotype. CONCLUSIONS: Multiple antimicrobial resistance genes and gene coding for metabolism of phenolic compounds were identified in the genomes of the indri isolates, suggesting that Lp. plantarum maintains antimicrobial resistance in defense of antimicrobial plant secondary pathogens and that their metabolism by intestinal bacteria aids digestion of plant material by primate hosts. | 2023 | 37934609 |
| 1793 | 7 | 0.9417 | Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCE E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria. | 2019 | 30834329 |
| 3018 | 8 | 0.9416 | The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. | 1991 | 1946749 |
| 5129 | 9 | 0.9416 | Complete genome sequences of Vibrio parahaemolyticus strains L2171 and L2181 associated with AHPND in Penaeus vannamei postlarvae by hybrid sequencing. Vibrio parahaemolyticus strains L2171 and L2181 were isolated from a Penaeus vannamei shrimp hatchery. Both strains carry the pVA plasmid harboring the PirAB genes encoding the binary PirAB toxins that cause the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimp. The strains also harbor multidrug resistance (MDR) and a repertoire of virulence factor genes. Our goal was to determine their complete genome sequences and perform a comprehensive analysis of their genetic characteristics. Therefore, the genomes of two strains, which are highly virulent to shrimp were sequenced by Illumina and the PacBio platforms. These data contribute to a better understanding of V. parahaemolyticus and its role as a pathogen in commercially important species such as farmed shrimp, providing valuable insights for disease management in aquaculture. | 2025 | 40677256 |
| 5864 | 10 | 0.9415 | Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum. | 2002 | 12383727 |
| 5213 | 11 | 0.9414 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 1751 | 12 | 0.9412 | Strain Characterization of Streptococcus suis Serotypes 28 and 31, Which Harbor the Resistance Genes optrA and ant(6)-Ia. Streptococcus suis causes disease in pigs and is implicated increasingly in human disease worldwide. Although most clinical cases are associated with serotype 2, infections by other serotypes have sometimes been reported. Here, we sequenced the genome of a multidrug-resistant S. suis serotype 28 (strain 11313) and a multidrug-resistant S. suis serotype 31 (strain 11LB5). Strain 11313 was apathogenic in mouse infection models, whereas strain 11LB5 displayed ganglion demyelination, meningeal thickening, congestion, mononuclear cell infiltration, massive proliferation of cortical glial cells, and bacteria (>10(4) CFU/g) in the spinal cord and ganglia in mice. Furthermore, immunohistochemistry found that the heavily infiltrated glial cells were astrocytes. Strain 11313 harbored the resistance genes ant(6)-Ia, erm(B), optrA, tet(l), tet(o), and strain 11LB5 harbored the resistance genes ant(6)-Ia, erm(B), tet(40), tet(o/w/32/o), aac(6')-aph(2″). Mouse studies showed that strain 11LB5 exhibited a similar virulence to serotype 2 strain 700794, highlighting the need for surveillance of the other serotype S. suis isolates, in addition to serotype 2, in farms. This is the first report of the aminoglycoside resistance gene ant(6)-Ia in S. suis from animals. This suggests that S. suis might serve as an antibiotic resistance reservoir, which spreads the resistance gene ant(6)-Ia or optrA to other streptococcal pathogens on farms. | 2021 | 33669225 |
| 3036 | 13 | 0.9409 | Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria. | 2007 | 16828159 |
| 5184 | 14 | 0.9405 | In silico evaluation of genomic characteristics of Streptococcus infantarius subsp. infantarius for application in fermentations. This study aims to evaluate the in silico genomic characteristics of Streptococcus infantarius subsp. infantarius, isolated from Coalho cheese from Paraíba, Brazil, with a view to application in lactic fermentations. rRNA sequences from the 16S ribosomal region were used as input to GenBank, in the search for patterns that could reveal a non-pathogenic behavior of S. infantarius subsp. infantarius, comparing mobile genetic elements, antibiotic resistance genes, pan-genome analysis and multi-genome alignment among related species. S. infantarius subsp. infantarius CJ18 was the only complete genome reported by BLAST/NCBI with high similarity and after comparative genetics with complete genomes of Streptococcus agalactiae (SAG153, NJ1606) and Streptococcus thermophilus (ST106, CS18, IDCC2201, APC151) revealed that CJ18 showed a low number of transposases and integrases, infection by phage bacteria of the Streptococcus genus, absence of antibiotic resistance genes and presence of bacteriocin, folate and riboflavin producing genes. The genome alignment revealed that the collinear blocks of S. thermophilus ST106 and S. agalactiae SAG153 have inverted blocks when compared to the CJ18 genome due to gene positioning, insertions and deletions. Therefore, the strains of S. infantarius subsp. infantarius isolated from Coalho cheese from Paraíba showed genomic similarity with CJ18 and the mobility of genes analyzed in silico showed absence of pathogenicity throughout the genome of CJ18, indicating the potential of these strains for the dairy industry. | 2022 | 36417612 |
| 5381 | 15 | 0.9405 | Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG). | 2024 | 38078696 |
| 6139 | 16 | 0.9404 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 8356 | 17 | 0.9403 | Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles. Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology. | 2015 | 26279704 |
| 5878 | 18 | 0.9402 | Phenotypic and Safety Assessment of the Cheese Strain Lactiplantibacillus plantarum LL441, and Sequence Analysis of its Complete Genome and Plasmidome. This work describes the phenotypic typing and complete genome analysis of LL441, a dairy Lactiplantibacillus plantarum strain. LL441 utilized a large range of carbohydrates and showed strong activity of some carbohydrate-degrading enzymes. The strain grew slowly in milk and produced acids and ketones along with other volatile compounds. The genome of LL441 included eight circular molecules, the bacterial chromosome, and seven plasmids (pLL441-1 through pLL441-7), ranging in size from 8.7 to 53.3 kbp. Genome analysis revealed vast arrays of genes involved in carbohydrate utilization and flavor formation in milk, as well as genes providing acid and bile resistance. No genes coding for virulence traits or pathogenicity factors were detected. Chromosome and plasmids were packed with insertion sequence (IS) elements. Plasmids were also abundant in genes encoding heavy metal resistance traits and plasmid maintenance functions. Technologically relevant phenotypes linked to plasmids, such as the production of plantaricin C (pLL441-1), lactose utilization (pLL441-2), and bacteriophage resistance (pLL441-4), were also identified. The absence of acquired antibiotic resistance and of phenotypes and genes of concern suggests L. plantarum LL441 be safe. The strain might therefore have a use as a starter or starter component in dairy and other food fermentations or as a probiotic. | 2022 | 36614048 |
| 3021 | 19 | 0.9402 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |