# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6379 | 0 | 0.9813 | Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Anthropogenic activities mediated antibiotic resistance genes (ARGs) in the pristine aquatic bodies (lakes) is raising concern worldwide. Long read shotgun sequencing was used to assess taxonomic diversity, distribution of ARGs and metal resistance genes (MRGs) and mobile genetic elements (MGEs) in six sites within hypersaline Lonar soda lake (India) prone to various anthropogenic activities. Proteobacteria and Euryarchaeota were dominant phyla under domain Bacteria and Archaea respectively. Higher abundance of Bacteroidetes was pragmatic at sites 18LN5 and 18LN6. Functional analysis indicated 26 broad-spectrum ARGs types, not reported earlier in this ecosystem. Abundant ARG types identified were multidrug efflux, glycopepetide, bacitracin, tetracycline and aminogylcoside resistance. Sites 18LN1 and 18LN5 depicted 167 and 160 different ARGs subtypes respectively and rpoB2, bcrA, tetA(48), mupA, ompR, patA, vanR and multidrug ABC transporter genes were present in all samples. The rpoB2 gene was dominant in 18LN1, whereas bcrA gene in 18LN2-18LN6 sites. Around 24 MRGs types were detected with higher abundance of arsenic in 18LN1 and copper in 18LN2-18LN6, signifying metal contamination linked to MRGs. The bacterial taxa Pseudomonas, Thioalkalivibrio, Burkholderia, Clostridium, Paenibacillus, Bacillus and Streptomyces were significantly associated with ARGs. This study highlights the resistomic hotspots in the lake for deploying policies for conservation efforts. | 2020 | 32155479 |
| 6937 | 1 | 0.9794 | Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems. | 2025 | 40712359 |
| 7167 | 2 | 0.9793 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 7667 | 3 | 0.9792 | Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic). Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO(4)(2-) and NH(4)(+), were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment. | 2024 | 39159777 |
| 7164 | 4 | 0.9787 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 3499 | 5 | 0.9784 | Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10(7)-6.88 × 10(8) copies per g sediment (1.27 × 10(-2)-3.39 × 10(-2) copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem. | 2021 | 33652188 |
| 7668 | 6 | 0.9784 | Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite. Understanding the microbial ecology of landfills is crucial for improving waste management strategies and utilizing the potential of these microbial communities for biotechnological applications. This study aimed to conduct a comprehensive taxonomic and functional profiling of the microbial community present in the Addis Ababa municipal solid waste dumpsite using a shotgun metagenomics sequencing approach. The taxonomic analysis of the sample revealed the significant presence of bacteria, with the Actinomycetota (56%), Pseudomonadota (23%), Bacillota (3%), and Chloroflexota (3%) phyla being particularly abundant. The most abundant KEGG categories were carbohydrates metabolism, membrane transport, signal transduction, and amino acid metabolism. The biodegradation and metabolism of xenobiotics, as well as terpenoids and polyketides, were also prevalent. Moreover, the Comprehensive Antibiotic Resistance Database (CARD) identified 52 antibiotic resistance gene (ARG) subtypes belonging to 14 different drug classes, with the highest abundances observed for glycopeptide, phosphonic acid, and multidrug resistance genes. Actinomycetota was the dominant phylum harboring ARGs, followed by Pseudomonadota and Chloroflexota. This study offers valuable insights into the taxonomic and functional diversity of the microbial community in the Addis Ababa municipal solid waste dumpsite. It sheds light on the widespread presence of metabolically versatile microbes, antibiotic resistance genes, mobile genetic elements, and pathogenic bacteria. This understanding can contribute to the creation of efficient waste management strategies and the investigation of possible biotechnological uses for these microbial communities. | 2024 | 39551884 |
| 6383 | 7 | 0.9783 | Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process. | 2023 | 36681377 |
| 7733 | 8 | 0.9782 | A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose. | 2023 | 37125200 |
| 6913 | 9 | 0.9781 | Antibiotic resistance genes link to nitrogen removal potential via co-hosting preference for denitrification genes in a subtropical estuary. Estuaries are important sinks for antibiotic resistance genes (ARGs) and hotspots of nitrogen cycling. However, the interactions between nitrogen cycling functional genes (NCGs) and ARGs in estuaries remain poorly understood. This study employed metagenomic sequencing to explore potential interactions between nitrogen, ARGs, and microbial-mediated nitrogen cycling processes in estuarine waters. Results showed beta-lactam was the predominant subtype of ARGs (407 species), and sul1 exhibited the highest relative abundance (4.11 %). Nitrogen was the important factor driving spatiotemporal variation of ARGs, promoting their proliferation and dispersal by enhancing microbial growth and reproduction. Network analysis revealed wide and complex correlations between ARGs and NCGs. Nitrate-reducing bacteria were the main hosts of ARGs, and the greatest number of potential hosts were those involved in assimilatory nitrate reduction to ammonium (17.44 %), dissimilatory nitrate reduction to nitrite (16.59 %), and denitrification (15.71 %). Compared with dissimilatory nitrite reduction to ammonium genes, ARGs prefer to form co-hosting relationships with denitrification genes, indicating that ARGs had a stronger effect on the nitrogen removal potential than on the nitrogen retention potential. This study highlights the complex interactions between ARGs and nitrogen cycling processes in subtropical estuaries, and will provide a scientific base for couple management strategies of nitrogen and antibiotic pollution. | 2025 | 40934587 |
| 6991 | 10 | 0.9781 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 6821 | 11 | 0.9780 | Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health. | 2025 | 40043931 |
| 7004 | 12 | 0.9780 | Sheep and rapeseed cake manure promote antibiotic resistome in agricultural soil. The application of manure in agriculture caused the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil environments. However, the co-occurrence pattern and host diversity of ARGs and MGEs in soils amended with animal and green manures remains unclear. In this study, metagenomic assembly and binning techniques were employed to comprehensively explore the effects of sheep manure and green manure on soil microbiome, antibiotic resistomes, and ARG hosts. Both rapeseed cake manure and sheep manure increased the abundance and diversity of ARGs, with sheep manure particularly enhancing the abundance of ARGs conferring resistant to multidrug, quinolone, rifampicin, and macrolide-lincosamide-streptogramin (MLSB). Mobile genetic elements (MGEs), such as plasmids, transposases, and integrases, preferentially enhanced the potential mobility of some ARGs subtypes (i.e. sul2, aadA, qacH, and folp), facilitating the spread of ARGs. Additionally, sheep manure reshaped the bacterial community structure and composition as well as ARG hosts, some opportunistic pathogens (i.e. Staphylococcus, Streptococcus, and Pantoea) acquired antibiotic resistance and remained recalcitrant. It is concluded that rapeseed cake manure and sheep manure increased the co-occurrence of ARGs and MGEs, enriched the potential ARG hosts, and promoted the dissemination of ARGs in agricultural soils. | 2025 | 40633350 |
| 6939 | 13 | 0.9779 | Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems. | 2023 | 37007487 |
| 3078 | 14 | 0.9778 | Microbiome of Dipteran vectors associated with integron and antibiotic resistance genes in South Korea. The spread of antibiotic resistance genes (ARGs) across the environment and the role that organisms that interact with humans play as reservoirs of resistant bacteria pose important threats to public health. Flies are two-winged insects composing the order Diptera, which includes synanthropic species with significant ecological roles as pollinators, vectors, and decomposers. Here, we used iSeq100 metabarcoding to characterize the microbiome of six dipteran species in South Korea: Lucilia sericata, Lucilia illustris, Culex pipiens, Aedes vexans, Psychoda alternata and Clogmia albipunctata. We profiled a panel of common ARGs and performed correlation network analysis of the microbiome and resistome to identify co-occurrence patterns of bacterial amplicon sequence variants (ASVs) and resistance genes. We detected blaTEM, ermB, tetB, tetC, aac(6')-Ib-cr, cat2, sul1, qepA, int1 and int2, but no blaSHV, mecA, tetA or cat1. Notably, co-occurrence analysis showed highly mobile genes such as qepA, ermB and sul1 were associated with integron of class 1 integrase presence. These, along with aac(6')-Ib-cr were detected at higher rates across multiple species. Microbiome composition was distinct across species. Amplicon sequence variants (ASVs) of Pseudomonas, Corynebacterium, Clostridium, Ignatzschineria, Bacteroides, Streptococcus, Treponema and Dietzia showed strong co-occurrence with multiple ARGs. This study contributes to the understanding of the role of dipterans as reservoirs of antibiotic resistance. | 2025 | 41046045 |
| 6793 | 15 | 0.9777 | Interplays between cyanobacterial blooms and antibiotic resistance genes. Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs. | 2023 | 37897871 |
| 6802 | 16 | 0.9777 | Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life. | 2024 | 38971360 |
| 6872 | 17 | 0.9777 | Insight into co-hosts of nitrate reduction genes and antibiotic resistance genes in an urban river of the qinghai-tibet plateau. Microbial co-hosts of nitrate reduction genes (NRGs) and antibiotic resistance genes (ARGs) have been recently reported, but their ecology and biochemical role in urban waterways remain largely unknown. Here, we collected 29 surface water and 29 sediment samples in the Huangshui River on the Qinghai-Tibet Plateau during the wet and dry season, and 11 water samples from wastewater treatment plants and wetlands along the river. Using metagenomic sequencing, we retrieved 278 medium-to-high-quality metagenome-assembled genomes (MAGs) of NRG-ARG co-hosts, mainly belonging to the phyla Proteobacteria, Actinobacteriota, and Bacteroidota. Of microorganisms carrying ARGs, a high proportion (75.3%‒94.9%) also encoded NRGs, supporting nitrate reducing bacteria as dominant hosts of ARGs. Seasonal changes in antibiotic levels corresponded to significant variation in the relative abundance of NRG-ARG co-host in both water and sediments, resulting in a concomitant change in antibiotic resistance pathways. In contrast, the contribution of NRG-ARG co-hosts to nitrate reduction was stable between seasons. We identify specific antibiotics (e.g., sulphonamides) and microbial taxa (e.g., Acinetobacter and Hafnia) that may disproportionately impact these relationships to serve as a basis for laboratory investigations into bioremediation strategies. Our study suggests that highly abundant nitrate reducing microorganisms in contaminated environments may also directly impact human health as carriers of antibiotic resistance. | 2022 | 36215840 |
| 8127 | 18 | 0.9776 | Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem. | 2022 | 35876241 |
| 6381 | 19 | 0.9776 | Occurrence and distribution of antibiotic resistance genes in Elymus nutans silage from different altitudes on the Qinghai-Tibetan Plateau. INTRODUCTION: Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) have attracted more attentions in fermented feed recently. However, little information is available on the occurrence and distribution of ARGs in ensiled forages in the alpine region of the Qinghai-Tibetan plateau (QTP) with an extremely harsh environment. METHODS: The study investigated the distribution and spread mechanism of ARB and ARGs in Elymus nutans silage along 2600 m (low), 3600 m (medium) and 4600 m (high) altitude in the QTP. RESULTS: The major ARG types in Elymus nutans silage were multidrug, aminoglycoside, bacitracin, beta-lactam and polymyxin, while tnpA and IS91 were the dominant mobile genetic elements (MGEs) subtypes in the Elymus nutans silage. The dominant ARGs were mainly carried by Pantoea, Enterobacter, Serratia, and Lelliottia. Although altitudinal gradient had no influence on the diversity or abundance of other ARGs and MGEs in the Elymus nutans silage (p > 0.05), the network co-occurrence patterns among ARGs, MGEs, and bacteria in high-altitude silage were more complex than that in low- and medium-altitude silages. The dominant clinical ARGs in the alpine silage were bacA and acrF, and the abundance of clinical ARGs decreased with prolonged fermentation time. DISCUSSION: This study provides important data on the status of ARGs in ensiled forage from the alpine region of the QTP. | 2025 | 40458713 |