# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1562 | 0 | 0.9052 | Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a bla (IMI-2) gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for bla (IMI-2) available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the bla (IMI-2) carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying bla (IMI-2), but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the bla (IMI-2) gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other bla (IMI)-carrying plasmids. | 2022 | 36338068 |
| 817 | 1 | 0.9031 | Mercury resistance transposons in Bacilli strains from different geographical regions. A total of 65 spore-forming mercury-resistant bacteria were isolated from natural environments worldwide in order to understand the acquisition of additional genes by and dissemination of mercury resistance transposons across related Bacilli genera by horizontal gene movement. PCR amplification using a single primer complementary to the inverted repeat sequence of TnMERI1-like transposons showed that 12 of 65 isolates had a transposon-like structure. There were four types of amplified fragments: Tn5084, Tn5085, Tn(d)MER3 (a newly identified deleted transposon-like fragment) and Tn6294 (a newly identified transposon). Tn(d)MER3 is a 3.5-kb sequence that carries a merRETPA operon with no merB or transposase genes. It is related to the mer operon of Bacillus licheniformis strain FA6-12 from Russia. DNA homology analysis shows that Tn6294 is an 8.5-kb sequence that is possibly derived from Tn(d)MER3 by integration of a TnMERI1-type transposase and resolvase genes and in addition the merR2 and merB1 genes. Bacteria harboring Tn6294 exhibited broad-spectrum mercury resistance to organomercurial compounds, although Tn6294 had only merB1 and did not have the merB2 and merB3 sequences for organomercurial lyases found in Tn5084 of B. cereus strain RC607. Strains with Tn6294 encode mercuric reductase (MerA) of less than 600 amino acids in length with a single N-terminal mercury-binding domain, whereas MerA encoded by strains MB1 and RC607 has two tandem domains. Thus, Tn(d)MER3 and Tn6294 are shorter prototypes for TnMERI1-like transposons. Identification of Tn6294 in Bacillus sp. from Taiwan and in Paenibacillus sp. from Antarctica indicates the wide horizontal dissemination of TnMERI1-like transposons across bacterial species and geographical barriers. | 2016 | 26802071 |
| 815 | 2 | 0.9015 | The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Three different, independently isolated mercury-resistance-conferring plasmids, pMER327/419, pMER330 and pMER05, from cultures originating from the river Mersey (UK), contain identical regulatory merR genes and transposon ends. The mer determinant from pMER327/419 contains an additional potential ORF (ORF F) located between merP and merA when compared with the archetypal Tn501. Although these plasmids confer narrow-spectrum resistance (resistance to Hg2+, but not organomercurials) their merR genes encode a potential organomercurial-sensing protein. Transposition of the mer of pMER05 into plasmid RP4 was demonstrated and, as with Tn502 and Tn5053, insertion occurred at a specific region. The sequence of pMER05 is identical at the 'left' and 'right' termini and across merR to Tn5053, which was independently isolated from the chromosome of a Xanthomonas sp. bacteria from the Khaidarkan mercury mine in Kirgizia, former Soviet Union [Kholodii et al., J. Mol. Biol. 230 (1993a) 1103-1107]. The transpositional unit of pMER05 is, like that of Tn5053, bounded by DNA homologous to the imperfect 25-bp inverted repeats (IR) of the In2 integron, which brackets antibiotic-resistance cassettes in Tn21 subgroup transposons. At one end of the transposable element, and internal to the In2-like IR, is a 38-bp IR which closely resembles the IR that bounds Tn21. | 1994 | 8063107 |
| 3021 | 3 | 0.9014 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 3007 | 4 | 0.9006 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 3003 | 5 | 0.9000 | IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions. | 2016 | 27303727 |
| 3000 | 6 | 0.9000 | A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Acinetobacter baumannii is an important nosocomial pathogen that often complicates treatment because of its high level of resistance to antibiotics. Though plasmids can potentially introduce various genes into bacterial strains, compared to other Gram-negative bacteria, information about the unique A. baumannii plasmid repertoire is limited. Here, whole genome sequence data was used to determine the plasmid content of strain A297 (RUH875), the reference strain for the globally disseminated multiply resistant A. baumannii clone, global clone 1(GC1). A297 contains three plasmids. Two known plasmids were present; one, pA297-1 (pRAY*), carries the aadB gentamicin, kanamycin and tobramycin resistance gene and another is an 8.7kb cryptic plasmid often found in GC1 isolates. The third plasmid, pA297-3, is 200kb and carries the sul2 sulphonamide resistance gene and strAB streptomycin resistance gene within Tn6172 and a mer mercuric ion resistance module elsewhere. pA297-3 transferred sulphonamide, streptomycin and mercuric ion resistance at high frequency to a susceptible A. baumannii recipient, and contains several genes potentially involved in conjugative transfer. However, a relaxase gene was not found. It also includes several genes encoding proteins involved in DNA metabolism such as partitioning. However, a gene encoding a replication initiation protein could not be found. pA297-3 includes two copies of a Miniature Inverted-Repeat Transposable Element (MITE), named MITE-297, bracketing a 77.5kb fragment, which contains several IS and the mer module. Several plasmids related to but smaller than pA297-3 were found in the GenBank nucleotide database. They were found in different A. baumannii clones and are wide spread. They all contain either Tn6172 or a variant in the same position in the backbone as Tn6172 in pA297-3. Some related plasmids have lost the segment between the MITE-297 copies and retain only one MITE-297. Others have segments of various lengths between two MITE-297 copies, and these can be derived from the region in pA297-3 via a deletion adjacent to IS related to IS26 such as IS1007 or IS1007-like. pA297-3 and its relatives represent a third type of conjugative Acinetobacter plasmid that contributes to the dissemination of antibiotic resistance in this species. | 2016 | 27601280 |
| 537 | 7 | 0.8999 | Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. To combine the features of the omega interposons with the advantages of in vivo transposition mutagenesis, we have constructed an artificial transposon, called Omegon-Km. The Omegon-Km transposon is carried on the plasmid pJFF350 which can be conjugally mobilized into a broad range of Gram-negative bacteria. Omegon-Km is flanked, in inverted orientation, by synthetic 28-bp repeats derived from the ends of IS1. In addition, each end of Omegon-Km has the very efficient transcription and translation terminators of the omega interposon. Internally, Omegon-Km carries the selectable kanamycin (Km)-neomycin resistance gene (alph A) which is expressed well in many Gram-negative bacteria. The IS1 transposition functions are located on the donor plasmid but external to Omegon-Km. Thus, insertions of Omegon-Km are very stable because they lack the capacity for further transposition. Omegon-Km mutagenesis is performed by conjugal transfer of pJFF350 from Escherichia coli into any Gram-negative recipient strain in which this plasmid is unable to replicate. Those cells which have had a transposition event are selected by their resistance to Km. Very high frequencies of Omegon-Km transposition were observed in Pseudomonas putida. Preliminary experiments with other Gram-negative soil and water bacteria (Rhizobium leguminosarum, Paracoccus denitrificans) yielded mutants at reasonable levels. The presence of an E. coli-specific origin of replication (ori) within Omegon-Km allows the rapid and easy cloning, in E. coli, of the nucleotide sequences flanking the site of the transposition event. | 1989 | 2546859 |
| 1529 | 8 | 0.8997 | Emergence and Characterization of a Novel IncP-6 Plasmid Harboring bla (KPC-2) and qnrS2 Genes in Aeromonas taiwanensis Isolates. The dissemination of Klebsiella pneumoniae carbapenemases (KPCs) among Gram-negative bacteria is an important threat to global health. However, KPC-producing bacteria from environmental samples are rarely reported. This study aimed to elucidate the underlying resistance mechanisms of three carbapenem-resistant Aeromonas taiwanensis isolates recovered from river sediment samples. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) analysis indicated a close evolutionary relationship among A. taiwanensis isolates. S1-PFGE, Southern blot and conjugation assays confirmed the presence of bla (KPC-) (2) and qnrS2 genes on a non-conjugative plasmid in these isolates. Plasmid analysis further showed that pKPC-1713 is an IncP-6 plasmid with a length of 53,205 bp, which can be transformed into DH5α strain and mediated carbapenems and quinolones resistance. The plasmid backbone of p1713-KPC demonstrated 99% sequence identity to that of IncP-6-type plasmid pKPC-cd17 from Aeromonas spp. and IncP-6-type plasmid: 1 from Citrobacter freundii at 74% coverage. A 14,808 bp insertion sequence was observed between merT gene and hypothetical protein in p1713-KPC, which include the quinolone resistance qnrS2 gene. Emergence of plasmid-borned bla (KPC) and qnrS2 genes from A. taiwanensis isolates highlights their possible dissemination into the environment. Therefore, potential detection of such plasmids from clinical isolates should be closely monitored. | 2019 | 31572337 |
| 3004 | 9 | 0.8997 | IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit. We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. IMPORTANCE: Resistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26 plays a major role in the acquisition and dissemination of antibiotic resistance. IS257 (IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26 can use a conservative movement mechanism in which an incoming IS26 targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26 by examining whether the reverse precise excision reaction is also catalyzed by the IS26 transposase. | 2015 | 26646012 |
| 491 | 10 | 0.8996 | Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. We have studied the mechanisms of the horizontal dissemination of a broad-spectrum mercury resistance determinant among Bacillus and related species. This mer determinant was first described in Bacillus cereus RC607 from Boston Harbor, USA, and was then found in various Bacillus and related species in Japan, Russia and England. We have shown that the mer determinant can either be located at the chromosome, or on a plasmid in the Bacillus species, and is carried by class II mercury resistance transposons: Tn5084 from B. cereus RC607 and B. cereus VKM684 (ATCC10702) and Tn5085 from Exiguobacterium sp. TC38-2b. Tn5085 is identical in nucleotide sequence to TnMERI1, the only other known mer transposon from Bacillus species, but it does not contain an intron like TnMERI1. Tn5085 is functionally active in Escherichia coli. Tn5083, which we have isolated from B. megaterium MK64-1, contains an RC607-like mer determinant, that has lost some mercury resistance genes and possesses a merA gene which is a novel sequence variant that has not been previously described. Tn5083 and Tn5084 are recombinants, and are comprised of fragments from several transposons including Tn5085, and a relative of a putative transposon from B. firmus (which contains similar genes to the cadmium resistance operon of Staphylococcus aureus), as well as others. The sequence data showed evidence for recombination both between transposition genes and between mer determinants. | 2001 | 11446519 |
| 9876 | 11 | 0.8995 | The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOB(V) family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity. | 2022 | 34878299 |
| 6386 | 12 | 0.8992 | Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here. | 2020 | 32888596 |
| 3018 | 13 | 0.8991 | The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. | 1991 | 1946749 |
| 3008 | 14 | 0.8991 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 3016 | 15 | 0.8991 | Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. This study presents the first complete sequence of an IncU plasmid, pFBAOT6. This plasmid was originally isolated from a strain of Aeromonas caviae from hospital effluent (Westmorland General Hospital, Kendal, United Kingdom) in September 1997 (G. Rhodes, G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith, and R. W. Pickup, Appl. Environ. Microbiol. 66:3883-3890, 2000) and belongs to a group of related plasmids with global ubiquity. pFBAOT6 is 84,748 bp long and has 94 predicted coding sequences, only 12 of which do not have a possible function that has been attributed. Putative replication, maintenance, and transfer functions have been identified and are located in a region in the first 31 kb of the plasmid. The replication region is poorly understood but exhibits some identity at the protein level with replication proteins from the gram-positive bacteria Bacillus and Clostridium. The mating pair formation system is a virB homologue, type IV secretory pathway that is similar in its structural organization to the mating pair formation systems of the related broad-host-range (BHR) environmental plasmids pIPO2, pXF51, and pSB102 from plant-associated bacteria. Partitioning and maintenance genes are homologues of genes in IncP plasmids. The DNA transfer genes and the putative oriT site also exhibit high levels of similarity with those of plasmids pIPO2, pXF51, and pSB102. The genetic load region encompasses 54 kb, comprises the resistance genes, and includes a class I integron, an IS630 relative, and other transposable elements in a 43-kb region that may be a novel Tn1721-flanked composite transposon. This region also contains 24 genes that exhibit the highest levels of identity to chromosomal genes of several plant-associated bacteria. The features of the backbone of pFBAOT6 that are shared with this newly defined group of environmental BHR plasmids suggest that pFBAOT6 may be a relative of this group, but a relative that was isolated from a clinical bacterial environment rather than a plant-associated bacterial environment. | 2004 | 15574953 |
| 3060 | 16 | 0.8991 | Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene. | 2009 | 19332679 |
| 535 | 17 | 0.8989 | Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation. | 1988 | 2853689 |
| 1560 | 18 | 0.8988 | Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an in silico analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (n=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPF(G), MPF(T) and MPF(F) classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally. | 2020 | 32841111 |
| 417 | 19 | 0.8986 | Site-specific integration of genes into hot spots for recombination flanking aadA in Tn21 transposons. Tn21-related transposons are widespread among bacteria and carry various resistance determinants at preferential sites, hs1 and hs2. In an in vivo integrative recombination assay it was demonstrated that these hot spots direct the integration of aminoglycoside resistance genes like aadB from Klebsiella pneumoniae and aacAI from Serratia marcescens, in a recA- background. The maximum required recognition sequence which must be present in both the donor and recipient plasmids is 5' CTAAAACAAAGTTA 3' (hs2). The double-site-specific recombination occurred with a frequency of 10(-5)-10(-6). The resulting structures include not only replicon fusion products but also more complex structures carrying two copies of the donor plasmid or simply the donor gene flanked by hs elements. hs1 and hs2 are thought to act as recognition sites for a transacting site-specific recombinase. By the use of Tn21 deletion derivatives, it has been shown that the recombinase is not encoded by Tn21. This new integrative recombination system is involved in the acquisition of new genes by Tn21-related transposons and their spread among bacterial populations. | 1991 | 1654505 |