# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2720 | 0 | 0.9981 | Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies. | 2025 | 40760424 |
| 2683 | 1 | 0.9978 | High prevalence of virulence genes and multi-drug resistance in Pasteurella multocida from goats in Sichuan, China. Pasteurella multocida is one of the most important pathogens that infect goats, causing serious economic losses in the goat breeding industry. To understand the biological characteristics of P. multocida from goats, a comprehensive characterization of bacteria isolated from 342 nasal swabs and 8 lung tissue samples from goat farms in Sichuan, China, was performed. A total of 34 isolates were assigned to one capsular type, D, and one lipopolysaccharide (LPS) genotype, L3, indicating that the D: L3 was the predominant serotype in goat farms. In the 34 isolates, multiple virulence-related genes were identified, with a detection rate of 100 % (34/34) for the genes ompA, ompH, oma87, exbB, and exbD. It is noteworthy that the prevalence of the toxA gene, which encodes the P. multocida toxin (PMT), was found to be 85.2 % (29/34). Furthermore, antimicrobial susceptibility testing indicated a high prevalence of multidrug resistance, with resistance rates of 41.1 % for ampicillin, 38.2 % for tetracycline, and 32.3 % for kanamycin. Overall, this study provides a foundational understanding of the epidemiology and antimicrobial resistance of P. multocida in goats, offering insights for future prevention and control measures. | 2025 | 40174797 |
| 2649 | 2 | 0.9978 | Multidrug Resistance and Virulence Traits of Salmonella enterica Isolated from Cattle: Genotypic and Phenotypic Insights. Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has contributed to the emergence of multidrug-resistant (MDR) Salmonella strains. This study provides insights into the genotypic and phenotypic characteristics among Salmonella isolates from necropsied cattle. Methods: A total of 1008 samples were collected from necropsied cattle. Salmonella enterica subspecies were identified by MALDI-TOF MS and subsequently confirmed by serotyping. The biofilm-forming ability of the isolated bacteria was assessed using a crystal violet assay. The motility of the isolates was assessed on soft agar plates. Additionally, the antimicrobial resistance genes (ARGs) and virulence genes were investigated. Antimicrobial resistance patterns were investigated against 19 antibiotics representing 9 different classes. Results:Salmonella species were isolated and identified in 27 necropsied cattle. Salmonella Dublin was the most prevalent serotype (29.6%). Additionally, all the isolates were biofilm producers at different levels of intensity, and 96.3% of the isolates exhibited both swarming and swimming motility. Furthermore, virulence genes, including invA, hilA, fimA, and csgA, were detected in all the isolates. The highest resistance was observed to macrolides (azithromycin and clindamycin) (100%), followed by imipenem (92.6%), and chloramphenicol (85.2%). All isolates were multidrug-resistant, with a multiple antibiotic resistance (MAR) index ranging between 0.32 and 0.74. The aminoglycoside resistance gene aac(6')-Ib was detected in all the isolates (100%), whereas the distribution of other antimicrobial resistance genes (ARGs) varied among the isolates. Conclusions: The increasing prevalence of MDR Salmonella poses a significant public health risk. These resistant strains can reduce the effectiveness of standard treatments and elevate outbreak risks. Strengthening surveillance and regulating antibiotic use in livestock are essential to mitigating these threats. | 2025 | 40723992 |
| 2721 | 3 | 0.9978 | A large sampling study on the occurrence and characteristics of Pseudomonas aeruginosa and heterotrophic bacteria in mineral water over seasons and in different containers. This study investigated the presence of Pseudomonas aeruginosa and heterotrophic bacteria in 1150 samples of bottled mineral water. P. aeruginosa was initially isolated using membrane filtration on selective agar and subsequently confirmed by PCR. Further characterization included pulsed-field gel electrophoresis (PFGE), detection of virulence genes, antimicrobial resistance profiling, Caco-2 cell invasion, and biofilm formation on different packaging materials. P. aeruginosa was detected in 11.5 % of samples, with the highest prevalence in reusable 20 L plastic jugs. PFGE revealed 41 distinct genetic profiles, indicating high diversity. The most frequent virulence genes detected were phzM (89.5 %), ExoS (88.8 %), toxA (86.8 %), and lasB (79.8 %). The more clinically relevant gene ExoU was found in 10.5 % of isolates. Antibiotic susceptibility tests showed that 14 % of isolates were multidrug-resistant, with resistance to piperacillin-tazobactam (26 %), gentamicin (18 %), and fluoroquinolones (12 %). Caco-2 cell assays showed that 73 % of strains exhibited high invasion potential (37.9-62.3 %), comparable to clinical isolates. Biofilm assays demonstrated strong adherence to materials commonly used in bottled water packaging, with the highest biofilm density observed on polypropylene. These findings suggest that reusable containers may be more prone to persistent contamination. Although the overall occurrence of P. aeruginosa was low, the presence of multidrug-resistant and virulent strains raises concerns, especially for immunocompromised individuals. These results emphasize the need for strict hygienic practices, particularly in reusable packaging systems, and routine microbial monitoring to ensure the microbiological safety of bottled mineral water. | 2025 | 40925222 |
| 5615 | 4 | 0.9977 | Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance. | 2024 | 39200000 |
| 5625 | 5 | 0.9977 | Genetic characterization and comparative genomics of a multi drug resistant (MDR) Escherichia coli SCM-21 isolated from a subclinical case of bovine mastitis. Escherichia coli is one of the major pathogens causing mastitis that adversely affects the dairy industry worldwide. This study employed whole genome sequence (WGS) approach to characterize the repertoire of antibiotic resistance genes (resistome), virulence genes (virulome), phylogenetic relationship and genome wide comparison of a multi drug resistant (MDR) E. coli(SCM-21) isolated from a case of subclinical bovine mastitis in Bangalore, India. The genome of E. coli SCM- 21 was found to be of 4.29 Mb size with 50.6% GC content, comprising a resistome of 22 genes encoding beta-lactamases (bla(TEM,)bla(AmpC)), polymyxin resistance (arnA) and various efflux pumps (acr, ade, emr,rob, mac, mar, rob), attributing to the bacteria's overall antibiotic resistance genetic profile. The virulome of E. coli SCM-21 consisted of genes encoding different traits [adhesion (ecp, fim, fde), biofilm formation (csg) and toxin production (ent, esp, fep, gsp)], necessary for manifestation of the infection. Phylogenetic relationship of E. coli SCM- 21 with other global E. coli strains (n = 4867) revealed its close genetic relatedness with E. coli strains originating from different hosts of varied geographical regions [human (Germany) bos taurus (USA, Belgium and Scotland) and chicken (China)]. Further, genome wide comparative analysis with E. coli (n = 6) from human and other animal origins showed synteny across the genomes. Overall findings of this study provided a comprehensive insight of the hidden genetic determinants/power of E. coli SCM-21 that might be responsible for manifestation of mastitis and failure of antibiotic treatment. Aforesaid strain forms a reservoir of antibiotic resistance genes (ARGs) and can integrate to one health micro biosphere. | 2022 | 35397469 |
| 5520 | 6 | 0.9977 | Emergence of highly virulent and multidrug-resistant Escherichia coli in breeding sheep with pneumonia, Hainan Province, China. BACKGROUND: Sheep are a rarely raised livestock in Hainan Island, China, because of the unfavorable tropical marine climate. Here, this article reports a severe pneumonia in the sheep breeding and domestication facility caused acute mortality during the winter 2021-2022. METHODS: Six sheep were clinically dissected and histopathologically observed. The bacteria were isolated and cultured by traditional methods and identified by 16S rRNA sequencing. The genotypes, serotypes, virulence genes and antimicrobial resistance genes were analyzed by PCR and whole genome sequencing. The pubMLST website was used for phylogenetic analysis of related strains. Kirby-Bauer disk diffusion method was used for antimicrobial susceptibility test. The antimicrobial susceptibility test standard was referred to the Clinical and Laboratory Standards Institute (CLSI). The virulence of bacteria was detected by mouse infection model. RESULTS: Etiology and histopathology examination of the pneumonia reveled pulmonary abscess and alveolar neutrophilia and pulmonary fibrinous exudates. Escherichia coli was the only bacterial species isolated, primarily from the lungs and blood of the six dead or moribund sheep, a total of 29 E. coli strains were isolated. Antimicrobial resistance profiling shows that all the isolates were resistant to six agents (penicillin, ampicillin, cephalothin, neomycin, erythromycin, and vancomycin) belonging to five classes of antibiotics, classifying them as multi drug resistant (MDR). Furthermore, genotyping analysis revealed all strains were common with 11-17 virulence factors indicating high pathogenicity. The lab mice infection model shows that all strains severely affect the health status particularly weight loss, lethargy, pneumonia and shortly lead to death. The molecular epidemiological analysis indicated most strains share the same genotype as previously reported strains in humans and other farmed animals this suggests a high possibility of cross-species transmission (CST) of virulent and MDR isolates. This CST could be from sheep to humans and other farmed animals or from humans and other farmed animals to sheep. CONCLUSION: Therefore, this study indicates that E. coli is an emerging threat that causes sheep pneumonia in Hainan, and the quarantine of contacts is important to control the spread of virulent E. coli and the transmission of acquired resistance genes between humans and farmed animals such as sheep. | 2024 | 39507338 |
| 5466 | 7 | 0.9977 | The Trade-Off Between Sanitizer Resistance and Virulence Genes: Genomic Insights into E. coli Adaptation. BACKGROUND: Escherichia coli is one of the most studied bacteria worldwide due to its genetic plasticity. Recently, in addition to characterizing its pathogenic potential, research has focused on understanding its resistance profile to inhibitory agents, whether these be antibiotics or sanitizers. OBJECTIVES: The present study aimed to investigate six of the main serogroups of foodborne infection (O26, O45, O103, O111, O121, and O157) and to understand the dynamics of heterogeneity in resistance to sanitizers derived from quaternary ammonium compounds (QACs) and peracetic acid (PAA) using whole-genome sequencing (WGS). METHODS: Twenty-four E. coli strains with varied resistance profiles to QACs and PAA were analyzed by WGS using NovaSeq6000 (150 bp Paired End reads). Bioinformatic analyses included genome assembly (Shovill), annotation via Prokka, antimicrobial resistance gene identification using Abricate, and core-genome analysis using Roary. A multifactorial multiple correspondence analysis (MCA) was conducted to explore gene-sanitizer relationships. In addition, a large-scale analysis utilizing the NCBI Pathogen Detection database involved a 2 × 2 chi-square test to examine associations between the presence of qac and stx genes. RESULTS: The isolates exhibited varying antimicrobial resistance profiles, with O45 and O157 being the most resistant serogroups. In addition, the qac gene was identified in only one strain (S22), while four other strains carried the stx gene. Through multifactorial multiple correspondence analysis, the results obtained indicated that strains harboring genes encoding Shiga toxin (stx) presented profiles that were more likely to be sensitive to QACs. To further confirm these results, we analyzed 393,216 E. coli genomes from the NCBI Pathogen Detection database. Our results revealed a significant association (p < 0.001) between the presence of qac genes and the absence of stx1, stx2, or both toxin genes. CONCLUSION: Our findings highlight the complexity of bacterial resistance mechanisms and suggest that non-pathogenic strains may exhibit greater tolerance to QAC sanitizer than those carrying pathogenicity genes, particularly Shiga toxin genes. | 2025 | 40149102 |
| 2289 | 8 | 0.9977 | Comprehensive Molecular Profiling of AcrAB-TolC Efflux Pump Genes in Salmonella typhi Isolates from Typhoid Infected Patients. Salmonella typhi is a facultative anaerobic, rod-shaped, Gram-negative bacterium that causes typhoid fever, a potentially fatal systemic infection. This study aimed to characterize antibiotic susceptibility patterns, mutations at the molecular level, and efflux pump genes in clinical isolates. In this study, blood samples (n = 2950) were collected from suspected typhoid-infected patients, and 380 (12.88%) bacterial isolates were found, comprising 144 (37.89%) Gram-positive and 236 (62.10%) Gram-negative bacteria. S. typhi was identified in 95 isolates (25%), corresponding to an overall prevalence of 3.22%. Biochemical identification was performed by Analytical Profile Index (API) 20-E strips, and molecular identification was done by partial 16S rRNA gene using PCR. The S. typhi isolates were categorized into multidrug-resistant (MDR), 13 (13.68%), and extensively drug-resistant (XDR), 82 (86.31%), and their resistance patterns were recorded. Ampicillin (98.94%) and chloramphenicol (93.68%) showed the highest antibiotic resistance profiles, while azithromycin and meropenem exhibited no resistance. Numerous mutations were found in acrA, acrB, and tolC genes after sequencing; TolC (MDR) showed the highest score (16 points), and AcrB (MDR) displayed the lowest score (9 points). I-Mutant 2.0 was used to assess mutations and calculate the reliability index (RI), whereas trRosetta and Discovery Studio were used to predict and refine 3D protein models. Consensus sequences of the selected genes were analyzed to construct phylogenetic trees illustrating evolutionary relationships with other Salmonella enterica serovars. The study emphasizes the concerning multidrug resistance of S. typhi isolates as well as notable mutations (genetic changes) that may affect efflux pump activity and contribute to resistance. | 2025 | 40844743 |
| 3068 | 9 | 0.9976 | Metagenomic profiling of pigeon faecal microbiota: insights into microbial diversity, pathogens, and antimicrobial resistance genes. Rock pigeon (Columba livia) droppings harbour diverse microorganisms, including potential pathogens. This study utilised shotgun metagenomic sequencing to analyse pigeon faecal microbiota and identify potential pathogens. Fresh faecal samples (273) were collected within Universiti Tunku Abdul Rahman Kampar campus, Malaysia. Total genome and viral genomes were extracted and sequenced using the Illumina NovaSeq 6000 platform. Taxonomic assignment, antimicrobial resistance (AMR) gene detection, and viral genome assembly were conducted using the CZ ID platform. The microbial diversity was predominated by bacteria, followed by eukaryotic viruses and fungi, with no archaea were detected. Pseudomonadota (84.44%) and Bacillota (15.26%) were the predominant bacterial phyla, with Pseudomonadota being 5.5 times more abundant, indicating potential enteric-like issues within the pigeon flocks. Approximately 5.11% of the bacterial community (comprising 38 species), was identified as potential pathogens, could primarily cause human enteric and respiratory infections. Nineteen AMR genes were detected, primarily associated with pathogenic Shigella, Salmonella, and Klebsiella. The presence of AMR genes and possible co-circulation among pathogenic bacteria impose the risk of emergence of multidrug-resistant bacteria. Nine avian virus species were detected. The predominant DNA virus, pigeon circovirus (73.23%) could cause immunosuppression, predisposing pigeons to secondary infections by E. coli, K. pneumoniae, and rotaviruses. The predominant RNA virus, rotaviruses (80.43%) could cause enteric diseases in both humans and birds. The fungal community comprised Kazachstania (94.11%) and Trichosporon (3.56%), with K. bovina and T. asahii identified as human pathogens. This study highlights the compelling need for effective pigeon control in dining areas, ventilation systems, and healthcare facilities. | 2025 | 40833454 |
| 2677 | 10 | 0.9976 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 2713 | 11 | 0.9976 | Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BACKGROUND: Avian pathogenic Escherichia coli (APEC) is the principle cause of colibacillosis affecting poultry. The main challenge to the poultry industry is antimicrobial resistance and the emergence of multidrug resistant bacteria that threaten the safety of the food chain. Risk factors associated with emergence of antimicrobial resistance among avian pathogenic E. coli were correlated with the inappropriate use of antimicrobials along with inadequate hygienic practices, which encourages the selection pressure of antimicrobial resistant APEC. The aim of this study was to isolate, identify, serogroup and genotype APEC from broilers, assess their antibiotic resistance profile, expressed genes and the associated risk factors. RESULTS: APEC was isolated from the visceral organs of sick chickens with a prevalence of 53.4%. The most prevalent serotypes were O1, O2, O25 and O78, in percentage of 14.8, 12.6, 4.4 and 23.7%, respectively. Virulence Associated Genes; SitA, iss, iucD, iucC, astA, tsh cvi and irp2 were detected in rate of 97.4, 93.3, 75, 74, 71, 46.5, 39 and 34%, respectively and 186 (69.2%) isolates possess > 5-10 genes. The highest resistance was found against sulphamethoxazole-trimethoprim, florfenicol, amoxicillin, doxycycline and spectinomycin in percentage; 95.5, 93.7, 93.3, 92.2 and 92.2%, respectively. Sixty-eight percent of APEC isolates were found to have at least 5 out of 8 antimicrobial resistant genes. The most predominant genes were Int1 97%, tetA 78.4%, bla TEM 72.9%, Sul1 72.4%, Sul2 70.2%. Two risk factors were found to be associated with the presence of multi-drug resistant APEC in broiler chickens, with a P value ≤0.05; the use of ground water as source of drinking water and farms located in proximity to other farms. CONCLUSIONS: This study characterized the VAGs of avian pathogenic E. coli and establish their antimicrobial resistance patterns. The widespread of antimicrobial resistance of APEC isolates and detection of ARGs highlighted the need to monitor the spread of ARGs in poultry farms and the environment in Jordan. Use of ground water and closely located farms were significant risk factors associated with the presence of MDR APEC in broiler chickens in Jordan. | 2019 | 31118039 |
| 5609 | 12 | 0.9976 | Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary. Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the "One Health" framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. | 2025 | 40872642 |
| 2685 | 13 | 0.9976 | Prevalence and genomic characterization of the Bacillus cereus group strains contamination in food products in Southern China. The Bacillus cereus group, as one of the important opportunistic foodborne pathogens, is considered a risk to public health due to foodborne diseases and an important cause of economic losses to food industries. This study aimed to gain essential information on the prevalence, phenotype, and genotype of B. cereus group strains isolated from various food products in China. A total of 890 strains of B. cereus group bacteria from 1181 food samples from 2020 to 2023 were identified using the standardized detection method. These strains were found to be prevalent in various food types, with the highest contamination rates observed in cereal flour (55.8 %) and wheat/rice noodles (45.7 %). The tested strains exhibited high resistance rates against penicillin (98.5 %) and ampicillin (98.9 %). Strains isolated from cereal flour had the highest rate of meropenem resistance (7.8 %), while strains from sausages were most resistant to vancomycin (16.8 %). A total of 234 out of the 891 B. cereus group strains were randomly selected for WGS analysis, 18.4 % of which displayed multidrug resistance. The species identification by WGS analysis revealed the presence of 10 distinct species within the B. cereus group, with B. cereus species being the most prevalent. The highest level of species diversity was observed in sausages. Notably, B. anthracis strains lacking the anthrax toxin genes were detected in flour-based food products and sausages. A total of 20 antibiotic resistance genes have been identified, with β-lactam resistance genes (bla1, bla2, BcI, BcII, and bla(TEM-116)) being the most common. The B. tropicus strains exhibit the highest average number of virulence genes (23.4). The diarrheal virulence genes nheABC, hblACD, and cytK were found in numerous strains. Only 4 of the 234 (1.7 %) sequenced strains contain the ces gene cluster linked to emetic symptoms. These data offer valuable insights for public health policymakers on addressing foodborne B. cereus group infections and ensuring food safety. | 2024 | 38354793 |
| 2414 | 14 | 0.9976 | Isolation and characterization of multidrug resistant Gallibacterium anatis biovar haemolytica strains from Polish geese and hens. Gallibacterium anatis biovar haemolytica is a bacterium that is frequently associated with infections of the reproductive tract and respiratory system in poultry. To assess the current prevalence and resistance profile of these bacteria in Poland, we collected and investigated 63 strains of Gallibacterium from diseased domestic poultry flocks including geese, laying hens, breeding hens and an ornamental hen. Detailed characterization of the isolates included the analysis of phenotypic antimicrobial resistance profiles and biofilm formation ability. Furthermore, the genetic background of 40 selected isolates regarding the presence of virulence and antimicrobial resistance genes and mobile genetic elements was determined. All investigated isolates were multidrug resistant, most prominently to β-lactams, fluoroquinolones, sulfonamides and macrolides. A total of 48 different resistance profiles were detected. Of all isolates, 50.8% formed a strong biofilm, where strains isolated from geese appeared to be better at biofilm formation than strains isolated from laying and breeding hens. Single-nucleotide polymorphism genotyping revealed that G. anatis bv. haemolytica strains are restricted in host and geographical distribution, and the geese isolates showed greater phylogenetic similarity. Whole genome sequencing enabled identification of 25 different antimicrobial resistance determinants. The most common resistance genes were tetB, bla(ROB-1), and bla(TEM-1) which may be located on mobile genetic elements. All isolates possessed the toxin gene gtxA, and the fimbrial gene flfA was identified in 95% of strains. Our results indicated that all G. anatis bv. haemolytica isolates showed multidrug resistant phenotypes. Strains isolated from geese were characterized by the highest percentage of isolates resistant to selected antimicrobials, probably reflecting host-related adaptations. | 2023 | 37612766 |
| 2373 | 15 | 0.9976 | Antimicrobial Resistance Profiles, Virulence Determinants, and Biofilm Formation in Enterococci Isolated from Rhesus Macaques (Macaca mulatta): A Potential Threat for Wildlife in Bangladesh? Enterococci are commensal bacteria that inhabit the digestive tracts of animals and humans. The transmission of antibiotic-resistant genes through human-animal contact poses a potential public health risk worldwide, as zoonoses from wildlife reservoirs can occur on every continent. The purpose of this study was to detect Enterococcus spp. in rhesus macaques (Macaca mulatta) and to investigate their resistance patterns, virulence profiles, and biofilm-forming ability. Conventional screening of rectal swabs (n = 67) from macaques was followed by polymerase chain reaction (PCR). The biofilm-forming enterococci were determined using the Congo red agar plate assay. Using the disk diffusion test (DDT), antibiogram profiles were determined, followed by resistance and virulence genes identification by PCR. PCR for bacterial species confirmation revealed that 65.7% (44/67) and 22.4% (15/67) of the samples tested positive for E. faecalis and E. faecium, respectively. All the isolated enterococci were biofilm formers. In the DDT, enterococcal isolates exhibited high to moderate resistance to penicillin, rifampin, ampicillin, erythromycin, vancomycin, and linezolid. In the PCR assays, the resistance gene bla(TEM) was detected in 61.4% (27/44) of E. faecalis and 60% (9/15) of E. faecium isolates. Interestingly, 88.63 % (39/44) of E. faecalis and 100% (15/15) of E. faecium isolates were phenotypically multidrug-resistant. Virulence genes (agg, fsrA, fsrB, fsrC, gelE, sprE, pil, and ace) were more frequent in E. faecalis compared to E. faecium; however, isolates of both Enterococcus spp. were found negative for the cyl gene. As far as we know, the present study has detected, for the first time in Bangladesh, the presence of virulence genes in MDR biofilm-forming enterococci isolated from rhesus macaques. The findings of this study suggest employing epidemiological surveillance along with the one-health approach to monitor these pathogens in wild animals in Bangladesh, which will aid in preventing their potential transmission to humans. | 2023 | 37508046 |
| 2788 | 16 | 0.9976 | Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BACKGROUND: Cholera has been endemic in Ghana since its detection in 1970. It has been shown that long-term survival of the bacteria may be attained in aquatic environments. Consequently, cholera outbreaks may be triggered predominantly in densely populated urban areas. We investigated clinical and environmental isolates of Vibrio cholerae O1 in Accra to determine their virulence genes, antibiotic susceptibility patterns and environmental factors maintaining their persistence in the environment. METHODS: Water samples from various sources were analyzed for the presence of V. cholerae O1 using culture methods. Forty clinical isolates from a previous cholera outbreak were included in the study for comparison. Antibiotic susceptibility patterns of the bacteria were determined by disc diffusion. Virulence genes were identified by analyzing genes for ctx, tcpA (tcpA(El Tor) tcpA(Cl)), zot, ompW, rbfO1 and attRS using PCR. Physicochemical characteristics of water were investigated using standard methods. One-way ANOVA and student t - test were employed to analyze the relationship between physicochemical factors and the occurrence of V. cholerae O1. RESULTS: Eleven V. cholerae O1 strains were successfully isolated from streams, storage tanks and wells during the study period. All isolates were resistant to one or more of the eight antibiotics used. Multidrug resistance was observed in over 97% of the isolates. All isolates had genes for at least one virulence factor. Vibrio cholerae toxin gene was detected in 82.4% of the isolates. Approximately 81.8% of the isolates were positive for tcpA(El Tor) gene, but also harbored the tcpA(cl) gene. Isolates were grouped into thirteen genotypes based on the genes analyzed. High temperature, salinity, total dissolved solids and conductivity was found to significantly correlate positively with isolation of V. cholerae O1. V. cholerae serotype Ogawa biotype El tor is the main biotype circulating in Ghana with the emergence of a hybrid strain. CONCLUSIONS: Multidrug resistant V. cholerae O1 with different genotypes and pathogenicity are present in water sources and co-exist with non O1/O139 in the study area. | 2019 | 30665342 |
| 5267 | 17 | 0.9975 | Diversity and antibiotic resistance of cultivable bacteria in bulk tank milk from dairy farms in Shandong Province, China. INTRODUCTION: This study systematically analyzed bacterial diversity and antimicrobial resistance (AMR) profiles in bulk tank milk from five dairy farms (n = 30) in Shandong Province, China, to assess public health risks associated with microbial contamination and provide critical data for regional quality control and AMR risk assessment in dairy production systems. METHODS: Total bacterial counts were quantified, revealing significant inter-farm variation (P < 0.05) with a range of 3.94-6.68 log CFU/mL. Among 129 bacterial isolates, genus-level dominance and species prevalence were identified. Antimicrobial susceptibility testing (AST) against 10 agents was performed using integrated resistance criteria combining Clinical and Laboratory Standards Institute (CLSI) standards and epidemiological cutoff values (ECOFFs). Nine resistance genes targeting seven antibiotic classes were detected via PCR. RESULTS: The highest resistance rate was observed for sulfadiazine (53.2%) and the lowest for levofloxacin (6.0%). Multidrug resistance was detected in 23% (20/87) of isolates, with 14 strains meeting ECOFFs-based resistance criteria. PCR analysis showed sul1 (70.5%) and ant(4')-Ia (54.3%) as the most prevalent resistance genes, while mcr-1, lnu (B), and bla (NDM-1) were absent in all isolates. Regional resistance variations correlated significantly with farm management practices. DISCUSSION: These findings underscore the impact of historical antibiotic use on AMR dissemination. Enhanced AMR surveillance in raw milk, improved antibiotic stewardship, and targeted interventions are crucial to mitigate public health risks from microbial contamination and horizontal gene transfer of resistance determinants. | 2025 | 40771950 |
| 5621 | 18 | 0.9975 | Comparative Genomics of DH5α-Inhibiting Escherichia coli Isolates from Feces of Healthy Individuals Reveals Common Co-Occurrence of Bacteriocin Genes with Virulence Factors and Antibiotic Resistance Genes. Background/Objectives: The presence of multi-drug-resistant (MDR) bacteria in healthy individuals poses a significant public health concern, as these strains may contribute to or even facilitate the dissemination of antibiotic resistance genes (ARGs) and virulence factors. In this study, we investigated the genomic features of antimicrobial-producing Escherichia coli strains from the gut microbiota of healthy individuals in Singapore. Methods: Using a large-scale screening approach, we analyzed 3107 E. coli isolates from 109 fecal samples for inhibitory activity against E. coli DH5α and performed whole-genome sequencing on 37 representative isolates. Results: Our findings reveal genetically diverse strains, with isolates belonging to five phylogroups (A, B1, B2, D, and F) and 23 unique sequence types (STs). Bacteriocin gene clusters were widespread (92% of isolates carried one or more bacteriocin gene clusters), with colicins and microcins dominating the profiles. Notably, we identified an hcp-et3-4 gene cluster encoding an effector linked to a Type VI secretion system. Approximately 40% of the sequenced isolates were MDR, with resistance for up to eight antibiotic classes in one strain (strain D96). Plasmids were the primary vehicles for ARG dissemination, but chromosomal resistance determinants were also detected. Additionally, over 55% of isolates were classified as potential extraintestinal pathogenic E. coli (ExPEC), raising concerns about their potential pathogenicity outside the intestinal tract. Conclusions: Our study highlights the co-occurrence of bacteriocin genes, ARGs, and virulence genes in gut-residing E. coli, underscoring their potential role in shaping microbial dynamics and antibiotic resistance. While bacteriocin-producing strains show potential as probiotic alternatives, careful assessment of their safety and genetic stability is necessary for therapeutic applications. | 2025 | 41009839 |
| 1857 | 19 | 0.9975 | Diverse Acinetobacter in retail meat: a hidden vector of novel species and antimicrobial resistance genes, including plasmid-borne bla(OXA-58), mcr-4.3 and tet(X3). Acinetobacter species, particularly Acinetobacter baumannii, are recognized pathogens in clinical settings, yet their presence in food systems, including fresh meat remains underexplored. This comprehensive study investigated the prevalence, diversity, concentration, and antimicrobial resistance of Acinetobacter spp. in 100 fresh meat samples from diverse animal sources across various packaging conditions. Acinetobacter isolates were initially characterized by MALDI-TOF MS, with comprehensive genomic characterization through whole-genome sequencing (WGS) of 116 representative isolates. Taxonomic refinement was performed using GTDB-Tk, core-genome, rpoB gene and Average Nucleotide Identity (ANI) phylogenomic approaches. Antimicrobial resistance genes (ARGs), and their plasmidic locations, were identified, and antimicrobial susceptibility profiles were determined for 33 A. baumannii isolates. Acinetobacter spp. were detected in 74 % of samples, with turkey meat showing the highest occurrence. The counts of this bacterium ranged from < 0.23 to 3.13 log(10) CFU/g. A total of 20 know species and 2 putative novel Acinetobacter species were identified by genomic analysis. Moreover, 16 novel A. baumannii sequence types (STs) were identified. ARG profiling revealed a complex resistome, including plasmid-located ARGs spanning multiple antibiotic classes. Critical findings include the presence of plasmid-borne bla(OXA-58), mcr-4.3, and tet(X3) genes. This study expands our understanding of Acinetobacter spp. diversity and reveals fresh meat as a significant vector for this genus, including species associated with human infections. Moreover, the detection of diverse resistance genes, including some associated with plasmids and conferring resistance to critically important antibiotics, underscores the potential public health implications of meat as a transmission pathway for these bacteria. | 2025 | 40513431 |