PRIMARY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
861300.9987Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level.202438169168
693610.9986Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.202540412325
856520.9986Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: Driven by functional modules and bacterial community. Antibiotics can exert selective pressures on sludge as well as affect the emergence and spread of antibiotic resistance genes (ARGs). However, the underlying mechanisms of ARGs transfers are still controversial and not fully understood in sludge system. In present study, two anaerobic sequence batch reactors (ASBR) were constructed to investigate the development of ARGs exposed to two sulfonamide antibiotics (SMs, sulfadiazine SDZ and sulfamethoxazole SMX) with increasing concentrations. The abundance of corresponding ARGs and total ARGs obviously increased with presence of SMs. Functional analyses indicated that oxidative stress response, signal transduction and type IV secretion systems were triggered by SMs, which would promote ARGs transfers. Network analysis revealed 18 genera were possible hosts of ARGs, and their abundances increased with SMs. Partial least-squares path modeling suggested functional modules directly influenced mobile genetic elements (MGEs) as well as the ARGs might be driven by both functional modules and bacteria community, while bacteria community composition played a more key role. Sludge with refractory antibiotics (SDZ) may stimulate the relevant functions and shift the microbial composition to a greater extent, causing more ARGs to emerge and spread. The mechanisms of ARGs transfers are revealed from the perspective of functional modules and bacterial community in sludge system for the first time, and it could provide beneficial directions, such as oxidative stress reduction, cellular communication control, bacterial composition directional regulation, for ARGs spread controlling in the future.202134563930
857330.9986Nitrogen-transforming bacteria as key hosts and disseminators of antibiotic resistance genes in constructed wetlands: Metagenomic and metatranscriptomic evidence. Given global concerns over antibiotic resistance genes (ARGs), constructed wetlands (CWs) have emerged as a cost-effective strategy to remove nitrogen (N) and mitigate ARG-related ecological risks. The occurrence and dissemination of ARGs are mainly driven by microorganisms. Although nitrogen transformation is a key process in CWs, the relationship between nitrogen-transforming bacteria (NTB) and ARG dynamics remains unclear. In this study, metagenomic and metatranscriptomic analyses were employed to comprehensively examine the associations between N transformation and the abundance, hosts, and ecological risks of ARGs in full-scale CWs. NTB, particularly dissimilatory nitrate reducers and bacteria involved in N organic degradation and synthesis, were identified as the primary hosts of ARGs. Furthermore, CWs substantially reduced ARG-related ecological risks, achieving decreases of 79.5 % in ARG expression, 94.9 % in mobile genetic elements, and 88.0 % in antibiotic-resistant pathogens, and identified NTB as key contributors to these risks. Both the decline in NTB abundance and adaptive fitness costs were identified as key mechanisms driving ARG reduction and mitigating ecological risk. This study highlights the critical role of N transformation in shaping ARG dynamics from a microbial perspective, providing a theoretical foundation for engineering practice in the co-control of ARGs and nitrogen removal in CWs.202541138407
860940.9985Nano-biochar regulates phage-host interactions, reducing antibiotic resistance genes in vermicomposting systems. Biochar amendment reshapes microbial community dynamics in vermicomposting, but the mechanism of how phages respond to this anthropogenic intervention and regulate the dissemination of antibiotic resistance genes (ARGs) remains unclear. In this study, we used metagenomics, viromics, and laboratory validation to explore how nano-biochar affects phage-host interactions and ARGs dissemination in vermicomposting. Our results revealed distinct niche-specific phage life strategies. In vermicompost, lytic phages dominated and used a "kill-the-winner" strategy to suppress antibiotic-resistant bacteria (ARB). In contrast, lysogenic phages prevailed in the earthworm gut, adopting a "piggyback-the-winner" strategy that promoted ARGs transduction through mutualistic host interactions. Nano-biochar induced the conversion of lysogenic to lytic phages in the earthworm gut, while concurrently reducing the abundance of lysogenic phages and their encoded auxiliary metabolic genes carried by ARB. This shift disrupted phage-host mutualism and inhibited ARGs transmission via a "phage shunting" mechanism. In vitro validation with batch culture experiments further confirmed that lysogenic phages increased transduction of ARGs in the earthworm gut, while nano-biochar reduced the spread of ARGs by enhancing lysis infectivity. Our study constructs a mechanistic framework linking nano-biochar induced shifts in phage lifestyles that suppress ARG spread, offering insights into phage-host coadaptation and resistance mitigation strategies in organic waste treatment ecosystems.202540838886
861250.9985Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.202438905974
861660.9985Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.202439366232
854970.9985Current perspectives on microalgae and extracellular polymers for reducing antibiotic resistance genes in livestock wastewater. Antibiotic resistance genes (ARGs) in livestock wastewater resulting from excessive antibiotics used in animal farming pose significant environmental and public health risks. Conventional treatment methods are often costly, inefficient, and may inadvertently promote ARG transmission. Microalgae, with their long genetic distance from bacteria and strong ability to utilize wastewater nutrients, offer a sustainable solution for ARG mitigation. This review studied the abundance and characterization of ARGs in livestock wastewater, highlighted microalgal-based removal mechanisms of ARGs, including phagocytosis, competition, and absorption by extracellular polymeric substances (EPS), and explored factors influencing their efficacy. Notably, the microalgae-EPS system reduced ARGs by 0.62-3.00 log, demonstrating significant potential in wastewater treatment. Key challenges, such as optimizing algal species, understanding EPS-ARG interactions, targeted reduction of host bacteria, and scaling technologies, were discussed. This work provides critical insights for advancing microalgal-based strategies for ARG removal, promoting environmentally friendly and efficient wastewater management.202540324729
643580.9985Protistan predation selects for antibiotic resistance in soil bacterial communities. Understanding how antibiotic resistance emerges and evolves in natural habitats is critical for predicting and mitigating antibiotic resistance in the context of global change. Bacteria have evolved antibiotic production as a strategy to fight competitors, predators and other stressors, but how predation pressure of their most important consumers (i.e., protists) affects soil antibiotic resistance genes (ARGs) profiles is still poorly understood. To address this gap, we investigated responses of soil resistome to varying levels of protistan predation by inoculating low, medium and high concentrations of indigenous soil protist suspensions in soil microcosms. We found that an increase in protistan predation pressure was strongly associated with higher abundance and diversity of soil ARGs. High protist concentrations significantly enhanced the abundances of ARGs encoding multidrug (oprJ and ttgB genes) and tetracycline (tetV) efflux pump by 608%, 724% and 3052%, respectively. Additionally, we observed an increase in the abundance of numerous bacterial genera under high protistan pressure. Our findings provide empirical evidence that protistan predation significantly promotes antibiotic resistance in soil bacterial communities and advances our understanding of the biological driving forces behind the evolution and development of environmental antibiotic resistance.202337794244
861590.9985How anammox responds to the emerging contaminants: Status and mechanisms. Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.202134087646
8575100.9985Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.202134139488
6938110.9985Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides.202541175058
6934120.9985Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems.202540885182
8644130.9985Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes.202540054196
6422140.9984Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.202438142997
8572150.9984Enantioselective effects of chiral antibiotics on antibiotic resistance gene dissemination and risk in activated sludge. Misuse of antibiotics drives the spread of antibiotic resistance genes (ARGs). Although reducing residual antibiotic concentrations can help curb ARG proliferation, the biodegradation and transformation of antibiotic stereoisomers may exacerbate resistance development. However, the impact of antibiotic enantiomers on ARG proliferation remains poorly understood. This study employed metagenomic analysis to investigate the enantiomer-specific selection and resistance risks of chiral antibiotic ofloxacin (OFL) and its (S)-enantiomer, levofloxacin (LEV), in activated sludge. Results showed that LEV primarily promoted the enrichment of ARGs related to aminoglycoside and mupirocin resistance by selecting for pathogenic bacteria carrying virulence factors under high toxicity stress. OFL-driven ARG proliferation involved more diverse mechanisms, including increased gene mobility, co-selection with heavy metals, broader host range, and elevated pathogenicity. The antibiotic resistome risk index (ARRI) further demonstrated a higher environmental risk under OFL treatment than LEV. These findings offer critical insights into the enantioselective resistance risks posed by chiral antibiotics.202540456327
8569160.9984Indole-3-acetic acid-mediated root exudates as potential inhibitors of antibiotic resistance genes in the rhizosphere microbiome: Mechanistic insights into microbial community assembly and resistome dissemination. Although the threat of antibiotic resistance genes (ARGs) in agriculture to human health has raised concerns, there is still a lack of effective and environmentally friendly measures to mitigate antibiotic resistance. Indole-3-acetic acid (IAA) and root exudates are environmentally friendly natural substances. However, the development of technologies harnessing their potential to suppress agricultural ARGs remains unexplored. Here, IAA-mediated key root exudates, N-acetylserotonin and N-methyltryptamine, were found to effectively reduce ARGs in rhizosphere soil. They affected microbial community assembly and further shaped ARGs profiles. Additionally, they inhibited antibiotic-resistant bacteria, potentially suppressing the vertical transfer of ARGs. More importantly, N-acetylserotonin and N-methyltryptamine inhibited ARGs conjugative transfer through suppressing pili assembly and homologous recombination. Overall, IAA-mediated root exudates reduce ARGs in rhizosphere soil by influencing microbial community assembly and inhibiting ARGs transfer. This study provides inspiration for the development of technologies related to plant auxins and root exudates to reduce ARGs in agriculture.202540850579
6421170.9984A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.202235439559
6426180.9984Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.202438805824
8577190.9984Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.202439078126