PREVAILING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
198900.9921Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association.202439850143
272010.9919Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies.202540760424
226920.9917Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
134830.9915Prevalence and transmission of antimicrobial-resistant Staphylococci and Enterococci from shared bicycles in Chengdu, China. Shared bicycles are prevailing in China but the extent to which they contribute to maintaining and transmitting pathogens and antibiotic-resistant bacteria remain largely unknown. To fill the knowledge gap, herein, swab samples (n = 963) were collected from handlebars of shared bicycles in areas of hospital, school, metro station (n = 887) and riders (n = 76) in Chengdu, China. Staphylococci (n = 241) and Enterococci (n = 69) were widely distributed across sampling locations at a frequency of 2.3%-12.9%, and 0.08%-5.5%, respectively. Bicycle or rider-borne Gram-positive bacteria were frequently resistant to clinically important antibiotics including linezolid, fosfomycin, and vancomycin, and a significant portion of these isolates (3.4%-16.6% for Staphylococci and 0.1%-13.8% for Enterococci) indicated multidrug resistance. Nineteen Staphylococcus aureus isolates were identified in this collection and 52.6% of which were considered as methicillin-resistant S. aureus. Whole genome sequencing further characterized 26 antimicrobial resistance genes (ARGs) including fosB, fusB, and lnu(G) in S. aureus and 21 ARGs including optrA in Enterococci. Leveraging a complementary approach with conventional MLST, whole genome SNP and MLST analyses, we present that genetically closely-related bacteria were found in bicycles and riders across geographical-distinct locations suggesting bacterial transmission. Further, five new ST types 5697-5701 were firstly characterized in S. aureus. ST 942 and ST 1640 are new ST types observed in E. faecalis, and E. faecium, respectively. Our results highlighted the risk of shared bicycle system in disseminating pathogens and antibiotic resistance which warrants effective disinfections.202032531590
523640.9914Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
199350.9914Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. OBJECTIVES: The occurrence of multidrug-resistant (MDR) bacteria in poultry poses the public health threat of zoonotic transmission to humans. Hence, this study assessed the occurrence of drug-resistant Escherichia coli in broilers in the largest live bird market in Kwara State, Nigeria in December 2020. METHODS: Presumptive E. coli isolates were isolated using the European Union Reference Laboratory guideline of 2017 and confirmed via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Broth microdilution was performed on confirmed E. coli isolates to determine the minimum inhibitory concentration. Five extensively drug-resistant (XDR) isolates were selected for Illumina whole genome sequencing to predict the resistome, phylotype, sequence type, serotype, and diversity of mobile genetic elements in these isolates. RESULTS: Of the 181 broiler caecal samples, 73 E. coli isolates were obtained, of which 67 (82.0%) and 37 (50.6%) were determined as MDR (resistant to at least three classes of antibiotics) and XDR (resistant to at least five classes of antibiotics), respectively. Whole genome sequencing revealed diverse sequence types, phylogroups, and serotypes (ST165/B1 - O80:H19, ST115/A - Unknown: H7, ST901/B1 - O109:H4, ST4087/F - O117:H42, and ST8324/A - O127:H42). The XDR E. coli isolates encoded resistance to fluoroquinolones, fosfomycin, sulfamethoxazole, ampicillin and cephalosporins, trimethoprim, aminoglycosides, chloramphenicol, tetracycline, and macrolides. Mutations in the gyrA gene conferring resistance to fluoroquinolones were also detected. There was a positive correlation between phenotypic resistance patterns and the antibiotic resistance genes that were detected in the sequenced isolates. The XDR isolates also harbored two disinfectant resistance genes (qacE and sitABCD) that conferred resistance to hydrogen peroxide and quaternary ammonium compounds, respectively. The genome of the XDR isolates harbored several mobile genetic elements and virulence-associated genes, which were conserved in all sequenced XDR isolates. CONCLUSIONS: This is the first report of co-carriage of antibiotic resistance genes and disinfectant resistance genes in E. coli isolated from broilers in Ilorin, Nigeria. Our findings suggest that poultry are potential carriers of clonally diverse, pathogenic, MDR/XDR E. coli, which may have detrimental zoonotic potentials on human health.202236375754
134760.9914Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant(9) for aminoglycosides, mdtK, gyrA, gyrB, parC, parE for quinolones and cat1, cat4 for phenicols. Phylogenetic analysis based on accessory genes clustered S. Legon strains separately from the S. Muenster strains. These strains were from different markets suggesting local circulation of related strains. Our study justifies consumer resistance to consumption of unripened soft cheese without further lethal heat treatment, and provides evidence that supports the Ghana Health Service recommendation for use of 3rd generation cephalosporins for the treatment of MDR NTS infections.201829680695
252370.9913Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6.202541088443
199280.9913Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs.201931057528
271390.9912Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BACKGROUND: Avian pathogenic Escherichia coli (APEC) is the principle cause of colibacillosis affecting poultry. The main challenge to the poultry industry is antimicrobial resistance and the emergence of multidrug resistant bacteria that threaten the safety of the food chain. Risk factors associated with emergence of antimicrobial resistance among avian pathogenic E. coli were correlated with the inappropriate use of antimicrobials along with inadequate hygienic practices, which encourages the selection pressure of antimicrobial resistant APEC. The aim of this study was to isolate, identify, serogroup and genotype APEC from broilers, assess their antibiotic resistance profile, expressed genes and the associated risk factors. RESULTS: APEC was isolated from the visceral organs of sick chickens with a prevalence of 53.4%. The most prevalent serotypes were O1, O2, O25 and O78, in percentage of 14.8, 12.6, 4.4 and 23.7%, respectively. Virulence Associated Genes; SitA, iss, iucD, iucC, astA, tsh cvi and irp2 were detected in rate of 97.4, 93.3, 75, 74, 71, 46.5, 39 and 34%, respectively and 186 (69.2%) isolates possess > 5-10 genes. The highest resistance was found against sulphamethoxazole-trimethoprim, florfenicol, amoxicillin, doxycycline and spectinomycin in percentage; 95.5, 93.7, 93.3, 92.2 and 92.2%, respectively. Sixty-eight percent of APEC isolates were found to have at least 5 out of 8 antimicrobial resistant genes. The most predominant genes were Int1 97%, tetA 78.4%, bla TEM 72.9%, Sul1 72.4%, Sul2 70.2%. Two risk factors were found to be associated with the presence of multi-drug resistant APEC in broiler chickens, with a P value ≤0.05; the use of ground water as source of drinking water and farms located in proximity to other farms. CONCLUSIONS: This study characterized the VAGs of avian pathogenic E. coli and establish their antimicrobial resistance patterns. The widespread of antimicrobial resistance of APEC isolates and detection of ARGs highlighted the need to monitor the spread of ARGs in poultry farms and the environment in Jordan. Use of ground water and closely located farms were significant risk factors associated with the presence of MDR APEC in broiler chickens in Jordan.201931118039
2101100.9912Antibiotic resistance genes circulating in Nigeria: a systematic review and meta-analysis from the One Health perspective. BACKGROUND: The misuse of antibiotics in developing countries has created serious threats to public healthcare systems and reduced treatment options. Multidrug-resistant bacteria harbour antibiotic resistance genes that help them subdue the effectiveness of several available antibiotics. This review aimed to assess antimicrobial resistance genes circulating in Nigeria via a systematic review and meta-analysis. METHODS: A comprehensive literature search was performed using five electronic databases: PubMed, Web of Science, Scopus, Google Search, and African Journals Online (AJOL). Articles related to antibiotic resistance genes in Nigeria, published between January 1, 2015 and October 31, 2024, were included. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias. The meta-analysis for random effects was performed to determine the proportions and pooled prevalence of the resistance genes from the various One Health domains, as well as heterogeneity in the data, using R software (Version 4.3.3) and the metaprop package. RESULTS: Of the 762 articles retrieved, 56 (humans [n = 33], animals [n = 8], environment [n = 12], human/animal [n = 1], and human/animal/environment [n = 2]) from the six geopolitical zones in Nigeria met the inclusion criteria. The extended-spectrum beta-lactamase (ESBL) gene with the highest pooled prevalence was blaSHV (24.0% [95% CI: 12.0–44.0]), followed by blaCTX-M (23.0% [95% CI: 14.0–37.0]), and the least was blaTEM (18.0% [95% CI: 8.0–37.0]). Among the carbapenemase genes, blaKPC (33.0% [95% CI: 7.0–76.0]) was the most prevalent, followed by blaNDM (21.0% [95% CI: 9.0–41.0]), blaOXA (11.0% [95% CI: 2.0–46.0]) and the least was blaVIM (9.0% [95% CI: 3.0–26.0]). The mecA gene also had a high pooled prevalence (51.0% [95% CI: 14.0–86.0]). The pooled prevalence of the erm, sul, tet, and qnr genes ranged from 19.0% (95% CI: 8.0–38.0) to 27.0% (95% CI: 13.0–47.0). Some antibiotic resistance genes were shared among the three domains. CONCLUSION: This systematic review and meta-analysis has demonstrated the co-existence of antibiotic resistance genes among bacteria causing infection in Nigeria, via the One Health approach. There is a need for future research on the circulation of antibiotic resistance genes in developing countries using internationally approved approaches to track down this menace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-025-02163-y.202540619397
2104110.9912A systematic review and meta-analysis on antibiotic resistance genes in Ghana. BACKGROUND: Addressing antimicrobial resistance (AMR) poses a complex challenge, primarily because of the limited understanding of bacterial antibiotic resistance genes (ARGs) and the spread of these genes across different domains. To bridge this knowledge gap in Ghana, we undertook a comprehensive systematic review and meta-analysis to quantify and estimate the prevalence of circulating ARGs in bacteria isolated from human, animal, and environmental sources. METHODS: A thorough literature search was conducted across three major databases-Web of Science, PubMed, and Scopus-to retrieve all relevant articles related to ARGs in Ghana from the inception of the databases to February 25, 2024. A risk-of-bias evaluation was performed using the Newcastle-Ottawa Scale (NOS), and the data analysis involved descriptive statistics and proportional meta-analysis. RESULTS: Of the 371 articles initially obtained, 38 met the inclusion criteria. These studies adequately covered Ghana geographically. The most prevalent ESBL gene identified was bla(CTX-M), with a prevalence of 31.6% (95% CI: 17.6-45.7), followed by bla(TEM) (19.5% [95% CI: 9.7-29.3]), and bla(SHV) (3.5% [95% CI: 0.3-6.6]). The pooled prevalence of carbapenemase genes ranged from 17.2% (95% CI: 6.9-27.6) for bla(NDM) to 10.3% (95% CI: 1.9-18.7) for bla(OXA). Additionally, other ARGs, including sul1, qnrS, gyrA, erm(B), and mecA, were detected, with prevalence ranging from 3.9% (95% CI: 0.0-8.5) to 16.4% (95% CI: 3.1-29.8). Several ARGs were shared across human, animal, and environmental sources. CONCLUSION: This review revealed that bacteria obtained from human, animal, and environmental samples in Ghana shared genes associated with AMR. This finding provides evidence on the interconnection of AMR across these three domains. Horizontal gene transfer, which enables the dissemination of ARGs between genetically diverse bacteria, can occur, necessitating a multidisciplinary approach to addressing antimicrobial resistance in Ghana.202540075357
2267120.9912MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings.202440385712
1797130.9911Genetic Characteristics of the Transmissible Locus of Stress Tolerance (tLST) and tLST Harboring Escherichia coli as Revealed by Large-Scale Genomic Analysis. The transmissible locus of stress tolerance (tLST) confers resistance to multiple stresses in E. coli. Utilizing 18,959 E. coli genomes available in the NCBI database, we investigated the prevalence, phylogenetic distribution, and configuration patterns of tLST, and correlations between tLST, and virulence and antimicrobial resistance (AMR) genes in E. coli. Four tLST variants were found in 2.7% of E. coli, with the most prevalent (77.1%) variant being tLST1 followed by tLST2 (8.3%), tLST3b (8.3%) and tLST3a (6.3%). The majority (93%) of those tLST were in E. coli belonging to phylogroup A in which the prevalence was 10.4%. tLST was also found in phylogroup B1 (0.5%) and C (0.5%) but not found in B2 or D-G. An additional 1% of the 18,959 E. coli genomes harbored tLST fragments to various extent. Phylogenetic analysis revealed both intra- and interspecies transmission of both chromosomal and plasmid-borne tLST, with E. coli showing a preference of chromosomal over plasmid-borne tLST. The presence of tLST and virulence genes in E. coli was overall negatively correlated, but tLST was found in all genomes of a subgroup of enterotoxigenic E. coli (ST2332). Of note, no Shiga toxin-producing E. coli (n = 3,492) harbored tLST. The prevalence of tLST and AMR genes showed different temporal trends over the period 1985 to 2019. However, a substantial fraction of tLST positive E. coli harbor AMR genes, posing a threat to public health. In conclusion, this study improves our understanding of the genetic characteristics of tLST and E. coli harboring tLST. IMPORTANCE This study, through a large-scale genomic analysis, demonstrated that the genomic island tLST related to multiple stress resistance (such as extreme heat resistance and oxidative stress tolerance) in E. coli is differentially present in subgroups of E. coli and is strongly associated with certain phylogenetic background of the host strain. The study also shows the transmission mechanisms of tLST in E. coli and other bacterial species. The overall negative association of tLST, and virulence genes and antimicrobial (AMR) genes suggest the selective pressures for the acquisition and transmission of these traits likely differ. Even so, the high prevalence of tLST in the enterotoxigenic E. coli clone ST2332 and co-occurrence of tLST and AMR genes in E. coli are concerning. Thus, the findings better our understanding of tLST evolution and provide information for risk assessment of tLST harboring bacteria.202235285715
2132140.9911Prevailing Antibiotic Resistance Patterns in Hospitalized Patients with Urinary Tract Infections in a Vietnamese Teaching Hospital (2014 - 2021). PURPOSE: In a Vietnamese teaching hospital, this study examined the prevalence and patterns of antimicrobial resistance (AMR) of common bacteria isolated from hospitalized patients with urinary tract infections (UTIs) between 2014 and 2021. METHODS: From 4060 urine samples collected, common pathogens were isolated using quantitative culture on brilliance UTI Clarity agar and blood agar. Bacterial identification, antimicrobial susceptibility testing, and multidrug resistance (MDR) classification followed standardized techniques. Bacteria with a frequency of less than 2% were excluded. Statistical analysis was performed using R software, with the chi-square test applied and significance set at p < 0.05. RESULTS: Of 4060 urine samples collected, 892 (22.0%) had positive results for common infections. Gram-negative bacteria predominated (591/892; 66.3%), with Escherichia coli being the most prevalent (336/892; 37.7%). Enterococcus spp. (152/892; 17.0%) was the leading Gram-positive pathogen. Some antibiotics had significant resistance rates, especially in Gram-negative bacteria, with ampicillin having the greatest resistance rate (92.8%). Carbapenems and nitrofurantoin remained generally effective. Among Gram-positive bacteria, high resistance was seen for macrolides ranging from 85.5% (azithromycin) to 89.8% (erythromycin), and for tetracyclines, ranging from 0% (teicoplanin) to 85.2% (tetracycline). There was no resistance to tigecycline and teicoplanin, indicating their potential efficacy against multidrug resistance (MDR) bacteria causing UTIs. MDR rates were higher in Gram-negative bacteria (64.8% versus 43.5%), with Klebsiella pneumoniae having the highest rate (78.7%). CONCLUSION: This study underscores the urgent need for ongoing surveillance of AMR patterns in Vietnam and emphasizes the significance of efficient infection prevention methods, prudent use of antibiotics, and targeted interventions to combat antimicrobial resistance.202539911566
2955150.9910Mapping the widespread distribution and transmission dynamics of linezolid resistance in humans, animals, and the environment. BACKGROUND: The rise of linezolid resistance has been widely observed both in clinical and non-clinical settings. However, there were still data gaps regarding the comprehensive prevalence and interconnections of linezolid resistance genes across various niches. RESULTS: We screened for potential linezolid resistance gene reservoirs in the intestines of both humans and animals, in meat samples, as well as in water sources. A total of 796 bacteria strains out of 1538 non-duplicated samples were identified to be positive for at least one linezolid resistance gene, optrA, poxtA, cfr, and cfr(D). The prevalence of optrA reached 100% (95% CI 96.3-100%) in the intestines of pigs, followed by fish, ducks, and chicken at 77.5% (95% CI 67.2-85.3%), 62.0% (95% CI 52.2-70.9%), and 61.0% (95% CI 51.2-70.0%), respectively. The meat and water samples presented prevalences of 80.0% (95% CI 70.6-87.0%) and 38.0% (95% CI 25.9-51.9%), respectively. The unreported prevalence of the cfr(D) gene was also relatively higher at 13.0% (95% CI 7.8-21.0%) and 19.0% (95% CI 10.9-25.6%) for the feces samples of ducks and pigs, respectively. Enterococci were the predominant hosts for all genes, while several non-enterococcal species were also identified. Phylogenetic analysis revealed a significant genetic distance among linezolid resistance gene reservoirs, with polyclonal structures observed in strains within the same niche. Similar genetic arrays harboring assorted insertion sequences or transposons were shared by reservoirs displaying heterogeneous backgrounds, though large diversity in the genetic environment of linezolid resistance genes was also observed. CONCLUSIONS: The linezolid resistance genes were widespread among various niches. The horizontal transfer played a crucial role in driving the circulation of linezolid resistance reservoirs at the human-animal-environment interfaces. Video Abstract.202438481333
2268160.9910Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. BACKGROUND: Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). METHODS: A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. RESULTS: A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSL(B) and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSL(B) and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. CONCLUSION: High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSL(B) and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria.202134866919
5466170.9910The Trade-Off Between Sanitizer Resistance and Virulence Genes: Genomic Insights into E. coli Adaptation. BACKGROUND: Escherichia coli is one of the most studied bacteria worldwide due to its genetic plasticity. Recently, in addition to characterizing its pathogenic potential, research has focused on understanding its resistance profile to inhibitory agents, whether these be antibiotics or sanitizers. OBJECTIVES: The present study aimed to investigate six of the main serogroups of foodborne infection (O26, O45, O103, O111, O121, and O157) and to understand the dynamics of heterogeneity in resistance to sanitizers derived from quaternary ammonium compounds (QACs) and peracetic acid (PAA) using whole-genome sequencing (WGS). METHODS: Twenty-four E. coli strains with varied resistance profiles to QACs and PAA were analyzed by WGS using NovaSeq6000 (150 bp Paired End reads). Bioinformatic analyses included genome assembly (Shovill), annotation via Prokka, antimicrobial resistance gene identification using Abricate, and core-genome analysis using Roary. A multifactorial multiple correspondence analysis (MCA) was conducted to explore gene-sanitizer relationships. In addition, a large-scale analysis utilizing the NCBI Pathogen Detection database involved a 2 × 2 chi-square test to examine associations between the presence of qac and stx genes. RESULTS: The isolates exhibited varying antimicrobial resistance profiles, with O45 and O157 being the most resistant serogroups. In addition, the qac gene was identified in only one strain (S22), while four other strains carried the stx gene. Through multifactorial multiple correspondence analysis, the results obtained indicated that strains harboring genes encoding Shiga toxin (stx) presented profiles that were more likely to be sensitive to QACs. To further confirm these results, we analyzed 393,216 E. coli genomes from the NCBI Pathogen Detection database. Our results revealed a significant association (p < 0.001) between the presence of qac genes and the absence of stx1, stx2, or both toxin genes. CONCLUSION: Our findings highlight the complexity of bacterial resistance mechanisms and suggest that non-pathogenic strains may exhibit greater tolerance to QAC sanitizer than those carrying pathogenicity genes, particularly Shiga toxin genes.202540149102
5609180.9909Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary. Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the "One Health" framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health.202540872642
5196190.9908Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. BACKGROUND: Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS: The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS: The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS: The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.202438833914