PRETERM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
519300.9689Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.202438128408
516210.9679Genomic identification and characterization of Streptococcus oralis group that causes intraamniotic infection. BACKGROUND: Intraamniotic infection is a cause of spontaneous preterm labor. Streptococcus mitis is a common pathogen identified in intraamniotic infection, with the possible route of hematogenous dissemination from the oral cavity or migration from the vaginal canal. However, there are a few reports on Streptococcus oralis, a member of the S. mitis group, as a cause of pathogen in intraamniotic infection. We reported herein whole genome sequencing and comparative genomic analysis of S. oralis strain RAOG5826 that causes intraamniotic infection. RESULTS: Streptococcus mitis was initially identified from amniotic fluid, vaginal swab, and fetal blood of a patient presenting with preterm prelabor rupture of membranes with intraamniotic infection by the use of conventional microbiological methods (biochemical phenotype, MALDI-ToF, 16 S rRNA). Subsequently, this strain was later identified as S. oralis RAOG5826 by whole-genome hybrid sequencing. Genes involved in macrolide and tetracycline resistance, namely ermB and tet(M), and mutations in penicillin-binding protein were present in the genome. Moreover, potential virulence genes were predicted and compared with other Streptococcal species. CONCLUSION: We reported a comprehensive genomic analysis of S. oralis, which causes intraamniotic infection. S. mitis was initially identified by conventional microbiological identification. However, whole-genome hybrid sequencing demonstrates S. oralis with complete profiles of antimicrobial resistance genes and potential virulence factors. This study highlights the limitations of traditional techniques and underscores the importance of genomic sequencing for accurate diagnosis and tailored antimicrobial treatment. The study also suggests that S. oralis may be an underestimated pathogen in intraamniotic infection.202541023353
843820.9668Virulence of Bacteria Colonizing Vascular Bundles in Ischemic Lower Limbs. BACKGROUND: We documented previously the presence of bacterial flora in vascular bundles, lymphatics, and lymph nodes of ischemic lower limbs amputated because of multifocal atheromatic changes that made them unsuitable for reconstructive surgery and discussed their potential role in tissue destruction. The question arose why bacterial strains inhabiting lower limb skin and considered to be saprophytes become pathogenic once they colonize deep tissues. Bacterial pathogenicity is evoked by activation of multiple virulence factors encoded by groups of genes. METHODS: We identified virulence genes in bacteria cultured from deep tissue of ischemic legs of 50 patients using a polymerase chain reaction technique. RESULTS: The staphylococcal virulence genes fnbA (fibronectin-binding protein A), cna (collagen adhesin precursor), and ica (intercellular adhesion) were present in bacteria isolated from both arteries and, to a lesser extent, skin. The IS256 gene, whose product is responsible for biofilm formation, was more frequent in bacteria retrieved from the arteries than skin bacteria. Among the virulence genes of Staphylococcus epidermidis encoding autolysin atlE, icaAB (intercellular adhesion), and biofilm insert IS256, only the latter was detected in arterial specimens. Bacteria cultured from the lymphatics did not reveal expression of eta and IS256 in arteries. The Enterococcus faecalis asa 373 (aggregation substance) and cylA (cytolysin activator) frequency was greater in arteries than in skin bacteria, as were the E. faecium cyl A genes. All Pseudomonas aeruginosa virulence genes were present in bacteria cultured from both the skin and arteries. Staphylococci colonizing arterial bundles and transported to tissues via ischemic limb lymphatics expressed virulence genes at greater frequency than did those dwelling on the skin surface. Moreover, enterococci and Pseudomonas isolated from arterial bundles expressed many virulence genes. CONCLUSIONS: These findings may add to the understanding of the mechanism of development of destructive changes in lower limb ischemic tissues by the patient's, but not hospital-acquired, bacteria, as well as the generally unsatisfactory results of antibiotic administration in these cases. More aggressive antibiotic therapy targeted at the virulent species should be applied.201626431369
516130.9662Genomic analysis of contaminant Stenotrophomonas maltophilia, from placental swab culture, carrying antibiotic resistance: a potential hospital laboratory contaminant. Acute chorioamnionitis has been considered as reflective of amniotic fluid infection. Standard microbiological work ups for causative microorganism of intra-amniotic infection is based on microbial identification. However, frequency of positive placental culture is varied depending on placental sampling techniques, contaminations, methods of microbiologic work ups or comprehensive microbiologic work ups. In this report, we performed a hybrid whole genome sequencing of a proven bacterial contaminant obtained from placental culture in a patient with preterm labor and acute chorioamnionitis. This is to unveil genetic characterization of contaminant Stenotrophomonas maltophilia habouring antibiotic resistance genes. Stenotrophomonas maltiphilia was proven to be bacterial contaminant since Ureaplasma urealyticum was subsequently demonstrated in amniotic fluid by 16 S rRNA gene Sanger sequencing. Cultivation results from other sources were no growth. We identified Stenotrophomonas maltiphilia strain RAOG732 which carried several antibiotic resistance genes, including aminoglycoside, fluoroquiolone and beta-lactam. Biofilm production genes were also identified in this genome. We firstly utilized a hybrid sequencing approach to investigate the genome of S. maltiphilia in the patient with preterm and acute chorioamnionitis, a proven bacterial laboratory contaminant. The analysis provided several antibiotic resistance-associated and genes biofilm-associated genes. The detection of S. maltiphilia raised the awareness of the colonization of biofilm-producing bacteria in hospitals, where surveillance for decontamination is necessary.202540594762
248440.9653Multilocus sequence typing analysis and second-generation sequencing analysis of Salmonella Wandsworth. BACKGROUND: Salmonella Wandsworth is a rare serotype of Salmonella. This study analyzed the genotyping, genome structure, and molecular biological functions of Salmonella Wandsworth based on the results of multilocus sequence typing and next-generation sequencing genome assembly analysis. METHODS: Serological typing was performed using the slide-agglutination method. The micro broth dilution method was used to test antibiotic susceptibility. Multilocus sequence typing (MLST) was used to perform the homology analysis, while the second-generation sequencing genome analysis was used to analyze the whole genome of the bacteria. RESULTS: Salmonella Wandsworth is Group Q Salmonella. The MLST of this strain was ST1498. Salmonella Wandsworth was sensitive to antibiotics, such as ceftriaxone, imipenem, chloramphenicol, and colistin, but was resistant to ampicillin, cefalotin, gentamicin, and ciprofloxacin. The second-generation sequencing results showed that the genome sequence length of the bacteria was 5109457bp. Annotated COG library analysis generated 3,746 corresponding genes. After the comparison with the KEGG library, 1,340 genes, which participate in 19 types of metabolic pathways, were obtained. A total of 249 pathogenic factors and 2 disease islands were predicted. 2 CRISPR sites and 8 Cas sites were predicted. It can be seen from the evolutionary tree that Salmonella Wandsworth MLST1498 and Paratyphi B str.SPB7 are gathered together. We identified one resistance gene, namely, aac(6')-Iaa accounting for aminoglycoside resistance. CONCLUSION: Salmonella Wandsworth isolated in this study is Salmonella group Q. Consequently, it is necessary to strengthen the understanding of clinical infections of Salmonella Wandsworth and carry out continuous monitoring and research.202134245607
306550.9650Species diversity, virulence, and antimicrobial resistance of the nasal staphylococcal and mammaliicoccal biota of reindeer. BACKGROUND: Staphylococcus (S.) spp. and Mammaliicoccus (M.) spp., in addition to their established role as components of the human and animal microbiota, can also cause opportunistic infections. This study aimed to characterize bacteria recovered from nasal cavities of healthy adult reindeer from two farms located in Poland (15 reindeer) and Germany (15 reindeer). The research include bacteria isolation, species identification, detection of selected superantigen (SAg) genes, assessment of biofilm-forming capability in vitro, and evaluation of antimicrobial resistance. RESULTS: Seventy-four staphylococci and mammaliicocci from 14 different species were isolated from 30 nasal swabs, with one to four strains obtained from each reindeer. The most frequently identified species was S. equorum, followed by S. succinus, M. sciuri, S. xylosus, M. lentus, S. chromogenes, S. devriesei, M. vitulinus, S. auricularis, S. agnetis, S. edaphicus, S. petrasii, S. simulans, and S. warneri. A greater species diversity was observed among the reindeer from Poland compared to those from Germany. All isolated bacteria were coagulase negative and clumping factor negative and did not carry any of the 21 analyzed SAg genes. M. sciuri demonstrated the highest antimicrobial resistance (100%), followed by S. succinus (91%) and S. equorum (78%). Resistance to rifampicin was the most common (30% strains). Sixteen strains (22%) exhibited biofilm production at least 10% greater than the strong biofilm-forming S. aureus ATCC 6538. CONCLUSIONS: This study reveals a significant knowledge gap regarding the nasal microbiota of reindeer. It contributes to our understanding of staphylococcal and mammaliicoccal biota of reindeer and underscores the necessity for monitoring of microbial populations to assess their health implications for both animals and humans, particularly concerning the zoonotic transmission of bacteria.202540452044
519960.9648Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. BACKGROUND: Chryseobacterium indologenes is an emerging opportunistic pathogen in hospital-acquired infection, which is intrinsically resistant to most antimicrobial agents against gram-negative bacteria. In the purpose of extending our understanding of the resistance mechanism of C. indologenes, we sequenced and analyzed the genome of an extensively antibiotic resistant C. indologenes strain, isolated from a Chinese prostate cancer patient. We also investigated the presence of antibiotic resistance genes, particularly metallo-β-lactamase (MBL) genes, and performed a comparative genomic analysis with other Chryseobacterium species. RESULTS: 16s rRNA sequencing indicated the isolate belongs to C. indologenes. We assembled a total of 1095M bp clean-filtered reads into 171 contigs by de novo assembly. The draft genome of C. indologenes J31 consisted of 5,830,795 bp with a GC content of 36.9 %. RAST analysis revealed the genome contained 5196 coding sequences (CDSs), 28 rRNAs, 81 tRNAs and 114 pseudogenes. We detected 90 antibiotic resistance genes from different drug classes in the whole genome. Notably, a novel bla(IND) allele bla(IND-16) was identified, which shared 99 % identity with bla(IND-8) and bla(IND-10). By comparing strain J31 genome to the closely four related neighbors in the genus Chryseobacterium, we identified 2634 conserved genes, and 1449 unique genes. CONCLUSIONS: In this study, we described the whole genome sequence of C. indologenes strain J31. Numerous resistance determinants were detected in the genome and might be responsible for the extensively antibiotic resistance of this strain. Comparative genomic analysis revealed the presence of considerable strain-specific genes which would contribute to the distinctive characteristics of strain J31. Our study provides the insight of the multidrug resistance mechanism in genus Chryseobacterium.201627785154
246870.9647Characterization of Pseudomonas kurunegalensis by Whole-Genome Sequencing from a Clinical Sample: New Challenges in Identification. Backgoround: The genus Pseudomonas encompasses metabolically versatile bacteria widely distributed in diverse environments, including clinical settings. Among these, Pseudomonas kurunegalensis is a recently described environmental species with limited clinical characterization. Objective and Methods: In this study, we report the genomic and phenotypic characterization of a P. kurunegalensis isolate, Pam1317368, recovered from a catheterized urine sample of a post-renal transplant patient without symptoms of urinary tract infection. Initial identification by MALDI-TOF MS misclassified the isolate as Pseudomonas monteilii. Whole-genome sequencing and average nucleotide identity (ANI) analysis (≥95%) confirmed its identity as P. kurunegalensis. The methodology included genomic DNA extraction, Illumina sequencing, genome assembly, ANI calculation, antimicrobial susceptibility testing, resistance gene identification and phylogenetic analysis. Results: Antimicrobial susceptibility testing revealed multidrug resistance, including carbapenem resistance mediated by the metallo-β-lactamase gene VIM-2. Additional resistance determinants included genes conferring resistance to fluoroquinolones and aminoglycosides. Phylogenetic analysis placed the isolate within the P. kurunegalensis clade, closely related to environmental strains. Conclusions: Although the clinical significance of this finding remains unclear, the presence of clinically relevant resistance genes in an environmental Pseudomonas species isolated from a human sample highlights the value of genomic surveillance and accurate species-level identification in clinical microbiology.202540700237
82780.9646Characterization of a ST137 multidrug-resistant Campylobacter jejuni strain with a tet(O)-positive genomic island from a bloodstream infection patient. Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, bla(OXA-61), tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria.202439208964
518590.9642Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients.202540595841
5192100.9642Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.202438881048
5201110.9641Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.202032127921
2469120.9641Whole genome analysis of multidrug-resistant Citrobacter freundii B9-C2 isolated from preterm neonate's stool in the first week. BACKGROUND: Resistance to colistin, the last line therapy for infections caused by multidrug-resistant Gram-negative bacteria, represents a major public health threat. Citrobacter freundii B9-C2 which was isolated from the stool of preterm neonate on the first week of life, displayed resistance to almost all major antibiotics, including colistin. Through whole genome sequencing (WGS), we characterised the genome features that underline the antibiotic-resistance phenotype of this isolate. METHODS: Genome of C. freundii B9-C2 was sequenced on an Illumina MiSeq platform. The assembled genome was annotated and deposited into GenBank under the accession number CP027849. RESULTS: Multiple antimicrobial resistance genes including bla(CMY-66) were identified. Further, the presence of 15 antibiotic efflux pump-encoding resistance genes, including crp, baeR, hns, patA, emrB, msbA, acrA, acrB, emrR, mdtC, mdtB, mdtG, kdpE, mdfA and msrB, were detected and likely to account for the observed cephalosporins, carbapenems, aminoglycosides and monobactams resistance in C. freundii B9-C2. The isolate also presented unique virulence genes related to biofilm formation, motility and iron uptake. The genome was compared to publicly available genomes and it was closely related to strains with environmental origins. CONCLUSION: To the best of our knowledge, this is the first report of intestinal carriage of colistin-resistant C. freundii from the stool of a neonate in Malaysia. Using genomic analysis, we have contributed to the understanding of the potential mechanism of resistance and the phylogenetic relationship of the isolates with draft genomes available in the public domain.202032304769
5462130.9639Whole Genome Sequence and Comparative Genomics Analysis of Multi-drug Resistant Environmental Staphylococcus epidermidis ST59. Staphylococcus epidermidis is a major opportunistic pathogen primarily recovered from device-associated healthcare associated infections (DA-HAIs). Although S. epidermidis and other coagulase-negative staphylococci (CoNS) are less virulent than Staphylococcus aureus, these bacteria are an important reservoir of antimicrobial resistance genes and resistance-associated mobile genetic elements that can be transferred between staphylococcal species. We report a whole genome sequence of a multidrug resistant S. epidermidis (strain G6_2) representing multilocus sequence type (ST) 59 and isolated from an environmental sampling of a hotel room in London, UK. The genome of S. epidermidis G6_2 comprises of a 2408357 bp chromosome and six plasmids, with an average G+C content of 32%. The strain displayed a multi-drug resistance phenotype which was associated with carriage of 7 antibiotic resistance genes (blaZ, mecA, msrA, mphC, fosB, aacA-aphD, tetK) as well as resistance-conferring mutations in fusA and ileS Antibiotic resistance genes were located on plasmids and chromosome. Comparative genomic analysis revealed that antibiotic resistance gene composition found in G6_2 was partly preserved across the ST59 lineage.201829716961
2418140.9639Baseline azithromycin resistance in the gut microbiota of preterm born infants. BACKGROUND: Macrolides, including azithromycin, are increasingly used in preterm-born infants to treat Ureaplasma infections. The baseline carriage of macrolide resistance genes in the preterm stool microbiota is unknown. OBJECTIVES: Identify carriage of azithromycin resistant bacteria and the incidence of macrolide resistant genes. METHODS: Azithromycin resistant bacteria were isolated from serial stool samples obtained from preterm infants (≤32 weeks' gestation) by culturing aerobically/anaerobically, in the presence/absence of azithromycin. Using quantitative PCR, we targeted 6 common macrolide resistance genes (erm(A), erm(B), erm(C), erm(F), mef(A/E), msr(A)) in DNA extracted from selected bacteria resistant to azithromycin. RESULTS: From 89 stool samples from 37 preterm-born infants, 93.3% showed bacterial growth in aerobic or anaerobic conditions. From the 280 azithromycin resistant isolates that were identified, Staphylococcus (75%) and Enterococcus (15%) species dominated. Macrolide resistance genes were identified in 91% of resistant isolates: commonest were erm(C) (46% of isolates) and msr(A) (40%). Multiple macrolide resistance genes were identified in 18% of isolates. CONCLUSION: Macrolide resistance is common in the gut microbiota of preterm-born infants early in life, most likely acquired from exposure to the maternal microbiota. It will be important to assess modulation of macrolide resistance, if macrolide treatment becomes routine in the management of preterm infants. IMPACT STATEMENT: Azithromycin resistance is present in the stool microbiota in the first month of life in preterm infants 91% of azithromycin resistant bacteria carried at least one of 6 common macrolide resistant genes Increasing use of macrolides in the preterm population makes this an important area of study.202437550487
5235150.9638Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance.202336948496
5206160.9638Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus). OBJECTIVES: The incidence of multidrug-resistant bacteria in wildlife animals has been investigated to improve our knowledge of the spread of clinically relevant antimicrobial resistance genes. The aim of this study was to report the first draft genome sequence of an extensively drug-resistant (XDR) Pseudomonas aeruginosa ST644 isolate recovered from a Magellanic penguin with a footpad infection (bumblefoot) undergoing rehabilitation process. METHODS: The genome was sequenced on an Illumina NextSeq(®) platform using 150-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.10, and the whole genome sequence was evaluated using bioinformatics approaches from the Center of Genomic Epidemiology, whereas an in-house method (mapping of raw whole genome sequence reads) was used to identify chromosomal point mutations. RESULTS: The genome size was calculated at 6436450bp, with 6357 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracyclines, quinolones and fosfomycin; in addition, mutations in the genes gyrA (Thr83Ile), parC (Ser87Leu), phoQ (Arg61His) and pmrB (Tyr345His), conferring resistance to quinolones and polymyxins, respectively, were confirmed. CONCLUSION: This draft genome sequence can provide useful information for comparative genomic analysis regarding the dissemination of clinically significant antibiotic resistance genes and XDR bacterial species at the human-animal interface.201829277728
8442170.9636Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.202133904608
2538180.9635Passenger pathogens on physicians. BACKGROUND: Hospital acquired infections pose a significant risk for patients undergoing hematopoietic stem cell transplantation. Horizontal transfer of antimicrobial resistance genes contributes to prevalence of multidrug-resistant infections in this patient population. METHODS: At an academic bone marrow transplantation center, we performed whole genome DNA sequencing (WGS) on commonly used physician items, including badges, stethoscopes, soles of shoes, and smart phones from 6 physicians. Data were analyzed to determine antimicrobial resistance and virulence factor genes. RESULTS: A total of 1,126 unique bacterial species, 495 distinct bacteriophages, 91 unique DNA viruses, and 175 fungal species were observed. Every item contained bacteria with antibiotic and/or antiseptic resistance genes. Stethoscopes contained greatest frequency of antibiotic resistance and more plasmid-carriage of antibiotic resistance. DISCUSSION AND CONCLUSIONS: These data indicate that physician examination tools and personal items possess potentially pathogenic microbes. Infection prevention policies must consider availability of resources to clean physical examination tools as well as provider awareness when enacting hospital policies. Additionally, the prevalence of antimicrobial resistance genes (eg, encoding resistance to aminoglycosides, β-lactams, and quinolones) reinforces need for antimicrobial stewardship, including for immunocompromised patients. Further research is needed to assess whether minute quantities of microbes on physician objects detectable by WGS represents clinically significant inoculums for immunocompromised patients.202336306861
5122190.9634Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5.202541087996