# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9364 | 0 | 0.9962 | Predictable properties of fitness landscapes induced by adaptational tradeoffs. Fitness effects of mutations depend on environmental parameters. For example, mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes. We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and previous observations on antibiotic resistance mutations. Our model generates a succession of landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic resistance in multiple mutational steps is relatively facile despite the complexity of the underlying landscape. | 2020 | 32423531 |
| 8429 | 1 | 0.9961 | Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria. | 2005 | 16242020 |
| 9347 | 2 | 0.9959 | Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. Horizontal gene transfer (HGT) can create diversity in the genetic repertoire of a lineage. Successful gene transfer likely occurs more frequently between more closely related organisms, leading to the formation of higher-level exchange groups that in some respects are comparable to single-species populations. Genes that appear fixed in a single species can be replaced through distant homologs or iso-functional analogs acquired through HGT. These genes may originate from other species or they may be acquired by an individual strain from the species pan-genome. Because of their similarity to alleles in a population, we label these gene variants that are exchanged between related species as homeoalleles. In a case study, we show that biased gene transfer plays an important role in the evolution of aminoacyl-tRNA synthetases (aaRS). Many microorganisms make use of these genes against naturally occurring antibiotics. We suggest that the resistance against naturally occurring antibiotics is the likely driving force behind the frequent switching between divergent aaRS types and the reason for the maintenance of these homeoalleles in higher-level exchange groups. Resistance to naturally occurring antibiotics may lead to the maintenance of different types of aminoacyl-tRNA synthetases in Bacteria through gene transfer. | 2011 | 21521245 |
| 9366 | 3 | 0.9959 | Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild-type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild-type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to "keep-up" with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild-type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild-type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short-lived. More generally, the results demonstrate that coevolving enemies may escape from Red-Queen dynamics. | 2010 | 20497216 |
| 9382 | 4 | 0.9959 | The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates. | 2003 | 12871898 |
| 9346 | 5 | 0.9958 | Horizontal gene transfer in prokaryotes: quantification and classification. Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis. | 2001 | 11544372 |
| 9257 | 6 | 0.9958 | Plasmid carriage can limit bacteria-phage coevolution. Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria-phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria-phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo. | 2015 | 26268992 |
| 8430 | 7 | 0.9958 | Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis. | 2007 | 17895995 |
| 9368 | 8 | 0.9958 | Gene inversion potentiates bacterial evolvability and virulence. Most bacterial genes are encoded on the leading strand, co-orienting the movement of the replication machinery with RNA polymerases. This bias reduces the frequency of detrimental head-on collisions between the two machineries. The negative outcomes of these collisions should lead to selection against head-on alleles, maximizing genome co-orientation. Our findings challenge this model. Using the GC skew calculation, we reveal the evolutionary inversion record of all chromosomally encoded genes in multiple divergent bacterial pathogens. Against expectations, we find that a large number of co-oriented genes have inverted to the head-on orientation, presumably increasing the frequency of head-on replication-transcription conflicts. Furthermore, we find that head-on genes, (including key antibiotic resistance and virulence genes) have higher rates of non-synonymous mutations and are more frequently under positive selection (dN/dS > 1). Based on these results, we propose that spontaneous gene inversions can increase the evolvability and pathogenic capacity of bacteria through head-on replication-transcription collisions. | 2018 | 30405125 |
| 9376 | 9 | 0.9957 | Historical Contingency Drives Compensatory Evolution and Rare Reversal of Phage Resistance. Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria-phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution. | 2022 | 35994371 |
| 9387 | 10 | 0.9957 | Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance. | 2016 | 27270455 |
| 9365 | 11 | 0.9957 | Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Hypermutable (mutator) bacteria have been associated with the emergence of antibiotic resistance. A simple yet untested prediction is that mutator bacteria are able to compensate more quickly for pleiotropic fitness costs often associated with resistance, resulting in the maintenance of resistance in the absence of antibiotic selection. By using experimental populations of a wild-type and a mutator genotype of the pathogenic bacterium Pseudomonas aeruginosa, we show that mutator bacteria can evolve resistance to antibiotics more rapidly than wild-type bacteria and, crucially, that mutators are better able to compensate for the fitness cost of resistance, to the extent that all costs of resistance were entirely compensated for in mutators. When competed against immigrant antibiotic-susceptible bacteria in the absence of antibiotics, antibiotic resistance remained at a high level in mutator populations but disappeared in wild-type populations. These results suggest that selection for mutations that offset the fitness cost associated with antibiotic resistance may help to explain the high frequency of mutator bacteria and antibiotic resistance observed in chronic infections. | 2010 | 20624092 |
| 9284 | 12 | 0.9956 | The population and evolutionary dynamics of homologous gene recombination in bacterial populations. In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT) -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation. | 2009 | 19680442 |
| 9367 | 13 | 0.9956 | Bacterial heterozygosity promotes survival under multidrug selection. Although bacterial cells typically contain a single chromosome, some species are naturally polyploid and carry multiple copies of their chromosome. Polyploid chromosomes can be identical or heterogeneous, the latter giving rise to bacterial heterozygosity. Although the benefits of heterozygosity are well studied in eukaryotes, its consequences in bacteria are less understood. Here, we examine this question in the context of antibiotic resistance to understand how bacterial genomic heterozygosity affects bacterial survival. Using a cell-wall-deficient model system in the actinomycete Kitasatospora viridifaciens, we found that heterozygous cells that contain different chromosomes expressing different antibiotic resistance markers persist across a broad range of antibiotic concentrations. Recombinant cells containing the same resistance genes on a single chromosome also survive these conditions, but these cells pay a significant fitness cost due to the constitutive expression of these genes. By contrast, heterozygous cells can mitigate these costs by flexibly adjusting the ratio of their different chromosomes, thereby allowing rapid responses in temporally and spatially variable environments. Our results provide evidence that bacterial heterozygosity can increase adaptive plasticity in bacterial cells in a similar manner to the evolutionary benefits provided by multicopy plasmids in bacteria. | 2025 | 40037350 |
| 9344 | 14 | 0.9956 | A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Arsenic is a ubiquitous element in the environment, a source of constant evolutionary pressure on organisms. The arsenic resistance machinery is thoroughly described for bacteria. Highly resistant lineages are also common in eukaryotes, but evolutionary knowledge is much more limited. While the origin of the resistance machinery in eukaryotes is loosely attributed to horizontal gene transfer (HGT) from bacteria, only a handful of eukaryotes were deeply studied. Here we investigate the origin and evolution of the core genes in arsenic resistance in eukaryotes using a broad phylogenetic framework. We hypothesize that, as arsenic pressure is constant throughout Earth's history, resistance mechanisms are probably ancestral to eukaryotes. We identified homologs for each of the arsenic resistance genes in eukaryotes and traced their possible origin using phylogenetic reconstruction. We reveal that: i. an important component of the arsenic-resistant machinery originated before the last eukaryotic common ancestor; ii. later events of gene duplication and HGT generated new homologs that, in many cases, replaced ancestral ones. Even though HGT has an important contribution to the expansion of arsenic metabolism in eukaryotes, we propose the hypothesis of ancestral origin and differential retention of arsenic resistance mechanisms in the group. Key-words: Environmental adaptation; resistance to toxic metalloids; detoxification; comparative genomics; functional phylogenomics. | 2022 | 35533945 |
| 8422 | 15 | 0.9956 | Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs. | 2020 | 32432548 |
| 9363 | 16 | 0.9956 | Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. We have explored compositional variation at synonymous (codon usage) and nonsynonymous (amino acid usage) positions in three complete genomes of Buchnera, endosymbiotic bacteria of aphids, and also in their orthologs in Escherichia coli, a close free-living relative. We sought to discriminate genes of variable expression levels in order to weigh the relative contributions of mutational bias and selection in the genomic changes following symbiosis. We identified clear strand asymmetries, distribution biases (putative high-expression genes were found more often on the leading strand), and a residual slight codon bias within each strand. Amino acid usage was strongly biased in putative high-expression genes, characterized by avoidance of aromatic amino acids, but above all by greater conservation and resistance to AT enrichment. Despite the almost complete loss of codon bias and heavy mutational pressure, selective forces are still strong at nonsynonymous sites of a fraction of the genome. However, Buchnera from Baizongia pistaciae appears to have suffered a stronger symbiotic syndrome than the two other species. | 2004 | 14672975 |
| 9237 | 17 | 0.9956 | The gossip paradox: Why do bacteria share genes? Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely? | 2022 | 35603365 |
| 9411 | 18 | 0.9956 | The evolutionary dynamics of male-killers and their hosts. Male-killing bacteria are cytoplasmic sex-ratio distorters that are transmitted vertically through females of their insect hosts. The killing of male hosts by their bacteria is thought to be an adaptive bacterial trait because it augments the fitness of female hosts carrying clonal relatives of those bacteria. Here we attempt to explain observations of multiple male-killers in natural host populations. First we show that such male-killer polymorphism cannot be explained by a classical model of male-killing. We then show that more complicated models incorporating the evolution of resistance in hosts can explain male-killer polymorphism. However, this is only likely if resistance genes are very costly. We also consider the long-term evolutionary dynamics of male-killers, and show that evolution towards progressively more 'efficient' male-killers can be thwarted by the appearance of host resistance. The presence of a resistance gene can allow a less efficient male-killer to outcompete its rival and hence reverse the trend towards more efficient transmission and reduced metabolic load on the host. | 2000 | 10762384 |
| 8987 | 19 | 0.9956 | Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Alternating antibiotic therapy, in which pairs of drugs are cycled during treatment, has been suggested as a means to inhibit the evolution of de novo resistance while avoiding the toxicity associated with more traditional combination therapy. However, it remains unclear under which conditions and by what means such alternating treatments impede the evolution of resistance. Here, we tracked multistep evolution of resistance in replicate populations of Staphylococcus aureus during 22 d of continuously increasing single-, mixed-, and alternating-drug treatment. In all three tested drug pairs, the alternating treatment reduced the overall rate of resistance by slowing the acquisition of resistance to one of the two component drugs, sometimes as effectively as mixed treatment. This slower rate of evolution is reflected in the genome-wide mutational profiles; under alternating treatments, bacteria acquire mutations in different genes than under corresponding single-drug treatments. To test whether this observed constraint on adaptive paths reflects trade-offs in which resistance to one drug is accompanied by sensitivity to a second drug, we profiled many single-step mutants for cross-resistance. Indeed, the average cross-resistance of single-step mutants can help predict whether or not evolution was slower in alternating drugs. Together, these results show that despite the complex evolutionary landscape of multidrug resistance, alternating-drug therapy can slow evolution by constraining the mutational paths toward resistance. | 2014 | 25246554 |