# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1262 | 0 | 0.9996 | Antibiotic Susceptibility and Virulence Genes in Enterococcus Isolates from Wild Mammals Living in Tuscany, Italy. Drug resistance is of great importance to human and animal health, but wild environments are still poorly understood in terms of their function as reservoirs of dangerous microbes and resistance determinants. The aim of the study was to determine the antibiotic susceptibility and virulence factors of Enterococcus bacteria from wildlife in Tuscany, Italy. Of the 36 mammalian fecal samples, 52 isolates were derived and classified as Enterococcus faecium (46% of isolates), Enterococcus hirae (19%), Enterococcus faecalis (13%), Enterococcus gallinarum (8%), Enterococcus casseliflavus (6%), Enterococcus durans (4%), Enterococcus mundtii (2%), and Enterococcus canintestini (2%) using both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and methods based on analysis of genetic material. The isolates tested showed the most frequent resistance to tetracycline (36.5% isolates), ciprofloxacin (36.5%), and erythromycin (25%). Three isolates showed high level of resistance (minimal inhibitory concentration ≥1,024 μg/mL) to vancomycin and teicoplanin, and 15% of the isolates demonstrated multidrug resistance. No isolate resistant to ampicillin, linezolid, or streptomycin was found. Among resistance genes, aac(6)-Ii (50% isolates), msrA/B (48%), msrC (42%), and tetM (31%) were identified most frequently. All E. faecium and E. faecalis isolates were positive for the efaAfm and efaAfs genes, respectively. Other virulence-associated genes, that is, gelE, cylA, asa1, esp, ace, orf1481, ptsD, and sgrA, were found in the majority of E. faecalis and several E. faecium isolates. Multilocus sequence typing analysis performed for selected isolates revealed three new sequence types. The results obtained indicate that wild mammals might act as reservoirs of resistance and virulence determinants that could be transferred between different ecosystems. | 2020 | 31663834 |
| 2966 | 1 | 0.9995 | Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract. | 2024 | 38191447 |
| 2674 | 2 | 0.9995 | Phylogeny, virulence factors and antimicrobial susceptibility of Escherichia coli isolated in clinical bovine mastitis. The aim of this study was to identify specific phylogeny groups, virulence genes or antimicrobial resistance traits of Escherichia coli isolated in bovine mastitis associated to clinical signs, persistence of intramammary infection in the quarter and recovery from mastitis. A total of 154 E. coli isolates from bovine clinical mastitis, 144 from the acute stage and 10 from follow-up samples 3 weeks later, originating from 144 cows in 65 dairy herds in Southern Finland were investigated. Phylogeny groups and virulence genes of the isolates were determined using polymerase chain reaction, and antimicrobial susceptibility using the VetMIC™ microdilution method. In ten cows (11.8%), infection persisted, confirmed by re-isolation of the same pulsed-field gel electrophoresis type from the affected quarter at 3 weeks post-treatment. The majority of isolates, 119 (82.6%), belonged to phylogeny group A, which mainly consisted of commensal strains. Altogether 56 isolates (38.9%) had at least one virulence gene detected. Most common virulence genes detected were irp2, iucD, papC iss; genes svg, stx1, stx2, cnf1 and hlyA were not found. Combinations of virulence genes varied greatly. Forty (27.8%) of the 144 E. coli isolates showed resistance to at least one antimicrobial tested. None of the studied phylogeny groups, virulence factors or antimicrobial resistance traits was associated with clinical signs, persistence of intramammary infection or clinical recovery from mastitis. The results support the conclusion that mastitis-causing E. coli bacteria are typical commensals. | 2011 | 20729012 |
| 2397 | 3 | 0.9995 | Antimicrobial resistance in Enterococcus strains isolated from healthy domestic dogs. Enterococci are opportunistic bacteria that cause severe infections in animals and humans, capable to acquire, express, and transfer antimicrobial resistance. Susceptibility to 21 antimicrobial agents was tested by the disk diffusion method in 222 Enterococcus spp. strains isolated from the fecal samples of 287 healthy domestic dogs. Vancomycin and ampicillin minimum inhibitory concentrations (MICs) and high-level aminoglycoside resistance (HLAR) tests were also performed. Isolates showed resistance mainly to streptomycin (88.7%), neomycin (80.6%), and tetracycline (69.4%). Forty-two (18.9%) isolates showed an HLAR to streptomycin and 15 (6.7%) to gentamicin. Vancomycin and ampicillin MIC values showed 1 and 18 resistant strains, respectively. One hundred and thirty-six (61.2%) strains were classified as multidrug resistant and six (2.7%) strains as possibly extensively drug-resistant bacteria. Enterococcus faecium and Enterococcus faecalis were the most prevalent antimicrobial resistant species. Companion animals, which often live in close contact with their owners and share the same environment, represent a serious source of enterococci resistant to several antibiotics; for this reason, they may be a hazard for public health by providing a conduit for the entrance of resistance genes into the community. | 2017 | 27976593 |
| 2390 | 4 | 0.9995 | Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain. This study investigated the presence of Enterococcus spp. strains in camel faeces, their virulence factors, and resistance to the antibiotics commonly used as therapy of enterococcal infections. One hundred and seventy three Enterococcus strains were isolated and identified to species level using polymerase chain reaction (PCR). Susceptibility to 11 antimicrobials was determined by disk diffusion method. Minimal Inhibitory Concentrations (MIC) of penicillin, ampicillin, vancomycin, teicoplanin, gentamicin, and streptomycin were all determined. Genes encoding resistance to vancomycin, tetracycline, and erythromycin as well as genes encoding some virulence factors were identified by PCR. Enterococcus hirae (54.3%) and Enterococcus faecium (25.4%) were the species most frequently isolated. None of the strains were resistant to vancomycin, teicoplanin, ampicillin or showed high level aminoglycoside resistance (HLAR). Strains resistant to rifampicin (42.42%) were those most commonly found followed those resistant to trimethoprim - sulfamethoxazole (33.33%). The genes tetM, tetL, vanC1, and vanC2-C3 were detected in some strains. Virulence genes were not detected. Monitoring the presence of resistant strains of faecal enterococci in animal used with recreational purposes is important to prevent transmission of those strains to humans and to detect resistance or virulence genes that could be transferred to other clinically important bacteria. | 2015 | 26455369 |
| 2698 | 5 | 0.9995 | EHEC, EPEC, and ETEC strains and their antibiotic resistance in drinking and tap water samples. BACKGROUND: Investigating of the presence of Enterohemorrhagic E. coli (EHEC), Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC) strains and their antibiotic resistance in natural spring waters and tap waters from two university hospitals, in Istanbul. METHODS: E. coli strains isolated from water samples were identified by polymerase chain reaction (PCR) method using stx-1, stx-2, eaeA genes specific for EHEC; eaeA, bfp genes specific for EPEC and lt, st genes specific for ETEC. Antibiotic susceptibility tests were done according to the Kirby-Bauer method using The Clinical and Laboratory Standards Institute (CLSI) criteria. RESULTS: E. coli strains were isolated from only five (2.7%) out of 184 water samples. Only one of the 36 E. coli strains isolated from these five water samples was found to be extended spectrum beta lactamase (ESBL) positive. According to PCR, ten E. coli strains isolated from one drinking water were identified as ETEC. Other than E. coli strains, coliforms and non-fermentative Gram negative bacteria were also isolated from waters. It was shown that 60 (81.1%) of these 74 strains isolated, other than E. coli, were found to be multiple resistant. CONCLUSIONS: Contrary to our expectations, it has been shown that natural spring waters (drinking waters) can be much more contaminated with fecal bacteria when compared with tap waters. The presence of pathogenic E. coli strains and antibiotic resistant Gram negative bacteria especially in drinking waters emphasize the importance of these types of studies. | 2015 | 25807645 |
| 2138 | 6 | 0.9995 | Isolation and molecular identification of multidrug-resistant Escherichia coli strains isolated from mastitic cows in Egypt. BACKGROUND: Mastitis is a common disease that affects the dairy sector globally because it not only impacts animal welfare but can also lead to significant financial losses. AIM: This study examined the phenotypic and genotypic profiles of the multidrug-resistant (MDR) Escherichia coli (E. coli) strains that were isolated from mastitic cows in Egypt to detect their pattern of antibiotic resistance. METHODS: Four hundred native breed lactating cows were evaluated to identify clinical and subclinical mastitis. A total of 100 mastitic milk samples (64 from clinical mastitis and 36 from subclinical mastitis) were collected for phenotypic isolation and identification of coliform bacteria. Escherichia coli isolates were identified through their morphological features, Gram staining, and biochemical tests. The identified E. coli strains were examined against various antibiotics using disk diffusion methods. All E. coli strains were analyzed for the antibiotic resistance genes Streptomycin (aadA), blaTEM, Tetracycline (tetA), Sulfonamides, and qnrA using PCR. RESULTS: Among 400 examined dairy cows, the prevalences of clinical and subclinical mastitis were 16% and 9%, respectively. Bacteriological isolation of coliform bacteria from mastitic milk samples revealed that E. coli was the most prevalent bacterium. Among 10 isolates of biochemically verified E. coli strains, 8 (80%) were MDR across 6 distinct classes of antibiotics. All recovered E. coli strains exhibited higher resistance to Amoxicillin, Cefotaxime, Sulphamethaxzole/Trimethoprim, and Tetracycline. High susceptibility was noticed to Ciprofloxaccin, Amoxicillin+Clavulinic, Streptomycin, Gentamicin, Chloramphenicol, and Colistin. The blaTEM gene was among the most common antibiotic resistance genes found in E. coli isolates (100%). Furthermore, the genotypes encoding resistance to tetA, aadA, and Sulfonamides were 50%, 40%, and 50%, respectively. CONCLUSION: MDR pathogenic E. coli strains are common in mastitic dairy cows in Egypt, and preventive actions must be implemented to avoid serious public health concerns. | 2025 | 40557079 |
| 2972 | 7 | 0.9995 | Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella. | 2018 | 29684574 |
| 2402 | 8 | 0.9995 | Antimicrobial Resistance and Virulence Genes in Staphylococci Isolated from Aviary Capercaillies and Free-living Birds in South-eastern Poland. INTRODUCTION: The current study characterises Staphylococcus bacteria recovered from dead free-living birds and captive capercaillies kept in south-eastern Poland. The results provide novel information about the antimicrobial resistance phenotype/genotype and the virulence profile of these bacteria. MATERIAL AND METHODS: Samples of internal organs were taken from dead birds. Staphylococcus strains were identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry. Susceptibility to 13 antibiotics was tested using a standard disc diffusion method on Mueller-Hinton agar. All isolates were screened for the presence of antibiotic resistance genes and staphylococcal enterotoxins (A to E), toxic shock syndrome toxin 1, exfoliative toxins A and B and Panton-Valentine leukocidin. RESULTS: A total of 129 bacterial strains belonging to 19 species of the Staphylococcus genus were isolated. A relatively high percentage of them resisted fluoroquinolones, tetracyclines, macrolides and β-lactams to a significant degree and harboured the tetK, tetM, ermC, mphC and mecA genes. Strains of the coagulase-negative S. sciuri, S. xylosus and S. cohnii were isolated with genes encoding enterotoxin A and toxic shock syndrome toxin. CONCLUSION: Both coagulase-positive and coagulase-negative staphylococci isolated from aviary capercaillies and free-living birds have significant pathogenic potential, and greater attention must be paid to the coagulase-negative species, which are still often considered mere contaminants. Virulence factors associated with resistance to antimicrobials, this being multiple in some strains, seem most important because they can be easily transferred between animals, especially those living in a given area. | 2022 | 36349137 |
| 1621 | 9 | 0.9995 | Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment. | 2021 | 34451523 |
| 2142 | 10 | 0.9995 | Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes. | 2020 | 32495224 |
| 2680 | 11 | 0.9995 | Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1-2, rep3, rep5-6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans. | 2022 | 35326843 |
| 1266 | 12 | 0.9995 | Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4') (n = 6) and aac(6')-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria. | 2014 | 24817534 |
| 1278 | 13 | 0.9995 | Multidrug-resistant enterococci in the hospital environment: detection of novel vancomycin-resistant E. faecium clone ST910. INTRODUCTION: The role of the hospital environment as a reservoir of resistant bacteria in Tunisia has been poorly investigated; however, it could be responsible for the transmission of multidrug-resistant bacteria. The objective was to study the prevalence of Enterococcus in the environment of a Tunisian hospital and the antibiotic resistance phenotype/genotype in recovered isolates, with special reference to vancomycin resistance. METHODOLOGY: A total of 300 samples were taken (March-June, 2013) and inoculated in Slanetz-Bartley agar plates supplemented or not supplemented with 8 µg/mL of vancomycin. Antibiotic resistance genes were tested by polymerase chain reaction (PCR). The clonal relatedness of the vanA isolates was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence testing (MLST). RESULTS: Enterococci were recovered in 33.3% of tested samples inoculated in SB medium. E faecium was the most prevalent species, followed by E. faecalis and E. casseliflavus. Antimicrobial resistance genes detected were as follows (number of isolates): erm(B) (71), tet(M) (18), aph(3')-IIIa (27), ant(6)-Ia (15), cat(A) (4), and van(C2) (6). Vancomycin-resistant-enterococci (VRE) were recovered from 14 samples (4.7%), when tested in SB-VAN. The 14 VRE (one per positive sample) were identified as E. faecium and contained the van(A),erm(B), tet(M), ant(6)-Ia, and aph(3')-IIIa genes. Thirteen of the VRE strains were ascribed by PFGE and MLST to a novel clone (new ST910), and only one VRE strain was typed as ST80 included in CC17. CONCLUSIONS: The emergence and spread of new clones of VRE, especially in the hospital environment in this country, could become particularly problematic. | 2016 | 27580324 |
| 2960 | 14 | 0.9995 | Antibiotic resistance, virulence genes, and phylogenetic groups of bacteria isolated from wild passerine birds in Iran. Wild passerine birds may serve as environmental reservoirs and as vectors for the long-distance dispersal of microorganisms and resistance determinants. However, there is no much knowledge on pathogenic bacteria in wild birds in Iran. The present study aimed to analyze antibiotic resistance in wild passerine birds collected from the northeast region of Iran as the rich breeding bird fauna with a special focus on Escherichia coli virulence, integron, and phylogenetic groups. A total of 326 isolates were collected and identified from the cloaca of wild birds using a swab. The results showed a high percentage of resistance to tetracycline (45.8%) and ampicillin (26.7%). The resistance genes, tet(A), tet(B), tet(M), and tet(L) were detected in tetracycline-resistant isolates, while the blaTEM gene was the most prevalent in ampicillin-resistant isolates (38.6%). Out of the 129 E. coli isolates examined, 99 isolates were found to have virulence gene, with the highest prevalence of the fimbriae (fimH) gene (22.4%). Additionally, the E. coli strains were most often classified into phylogenetic groups B1 (48.8%) followed by B2 (19.3%). Also, the highest average frequency of class 1 integron was detected among our isolates. Results indicated that wild birds are reservoirs of multidrug resistance and virulence genes that may have the potential to be transferred to other organisms, including humans. | 2024 | 39298116 |
| 2678 | 15 | 0.9995 | Phenotypic and molecular characterization of multidrug-resistant mastitis causing pathogens in dairy cattle. This study focused on isolating antibiotic-resistant mastitogens from cow milk; 57% of 100 samples tested positive by California mastitis test. Bacterial species from each milk sample were isolated and identified using Vitek® 2 automated system. Out of the 167 bacterial strains isolated, 14 were multidrug-resistant (MDR) and were further identified as belonging to Staphylococcus spp. Enterobacter spp. Morganella spp. and Elizabethkingia spp. Staphylococcus strains showed the highest resistance by phenotypic and genotypic screening, with 8% of mastitis isolates identified as MDR. These MDR bacterial strains were also found to harbour antibiotic resistance genes such as mecA (21%), blaZ (43%), gyrA (50%), and gyrB (59%). The tissue culture plate assay showed 11 multidrug-resistant bacteria as strong biofilm formers and the biofilm-related atlE gene was analysed from Staphylococcal strain M33.1. The findings highlight a public health risk from resistant dairy bacteria, emphasizing prophylactic measures and responsible antimicrobial use to prevent zoonotic transmission. | 2025 | 41115007 |
| 1308 | 16 | 0.9995 | Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the bla(CMY-2) and bla(TEM-1) genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits. | 2019 | 31842593 |
| 2662 | 17 | 0.9995 | Nasal Carriage of Methicillin-Resistant Staphylococcus Sciuri Group by Residents of an Urban Informal Settlement in Kenya. BACKGROUND: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. OBJECTIVES: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. METHOD: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK(®)2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. CONCLUSION: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts. | 2023 | 37529492 |
| 2675 | 18 | 0.9995 | Prevalence and Zoonotic Risk of Multidrug-Resistant Escherichia coli in Bovine Subclinical Mastitis Milk: Insights Into the Virulence and Antimicrobial Resistance. The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve E. coli, which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing E. coli (STEC) isolated from SCM milk. SCM-positive bovine milk was subjected to E. coli detection using cultural, biochemical, and molecular methods. Further, we detected STEC virulence genes including stx1, stx2, and eaeA. STEC isolates were tested for ARGs including blaSHV, CITM, tetA, and aac(3)-IV, and underwent antimicrobial susceptibility tests. Moreover, we performed a phylogenetic analysis of the stx1 gene of MDR-STEC. SCM was detected in 47.2% of milk samples of which 50.54% were E. coli positive. About 17.20% of E. coli isolates contained STEC virulence genes, and stx2 was the most prevalent. Moreover, all STEC isolates harbored at least one of the ARGs, while about 43.75% of the isolates carried multiple ARGs. Additionally, all the STEC isolates showed multidrug resistance, and were found to be fully resistant against amoxicillin, followed by ampicillin (87.50%) and gentamycin (75%); and were mostly sensitive to aztreonam (81.25%) and meropenem (68.75%). In phylogeny analysis, the stx1 gene of isolated MDR-STEC showed close relatedness with disease-causing non-O157 and O157 strains of different sources including cattle, humans, and food. | 2025 | 39816483 |
| 2406 | 19 | 0.9995 | Prevalence of antibiotic resistance genes in staphylococci isolated from ready-to-eat meat products. Prevalence of mecA, blaZ, tetO/K/M, ermA/B/C, aph, and vanA/B/C/D genes conferring resistance to oxacillin, penicillin, tetracycline, erythromycin, gentamicin, and vancomycin was investigated in 65 staphylococcal isolates belonging to twelve species obtained from ready-to-eat porcine, bovine, and chicken products. All coagulase negative staphylococci (CNS) and S. aureus isolates harbored at least one antibiotic resistance gene. None of the S. aureus possessed more than three genes, while 25% of the CNS isolates harbored at least four genes encoding resistance to clinically used antibiotics. In 15 CNS isolates the mecA gene was detected, while all S. aureus isolates were mecA-negative. We demonstrate that in ready-to-eat food the frequency of CNS harboring multiple antibiotic resistance genes is higher than that of multiple resistant S. aureus, meaning that food can be considered a reservoir of bacteria containing genes potentially contributing to the evolution of antibiotic resistance in staphylococci. | 2012 | 22844699 |