# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 612 | 0 | 0.9912 | Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues. | 2014 | 24365646 |
| 615 | 1 | 0.9910 | Escherichia coli RclA is a highly active hypothiocyanite reductase. Hypothiocyanite and hypothiocyanous acid (OSCN(-)/HOSCN) are pseudohypohalous acids released by the innate immune system which are capable of rapidly oxidizing sulfur-containing amino acids, causing significant protein aggregation and damage to invading bacteria. HOSCN is abundant in saliva and airway secretions and has long been considered a highly specific antimicrobial that is nearly harmless to mammalian cells. However, certain bacteria, commensal and pathogenic, are able to escape damage by HOSCN and other harmful antimicrobials during inflammation, which allows them to continue to grow and, in some cases, cause severe disease. The exact genes or mechanisms by which bacteria respond to HOSCN have not yet been elucidated. We have found, in Escherichia coli, that the flavoprotein RclA, previously implicated in reactive chlorine resistance, reduces HOSCN to thiocyanate with near-perfect catalytic efficiency and strongly protects E. coli against HOSCN toxicity. This is notable in E. coli because this species thrives in the chronically inflamed environment found in patients with inflammatory bowel disease and is able to compete with and outgrow other important commensal organisms, suggesting that HOSCN may be a relevant antimicrobial in the gut, which has not previously been explored. RclA is conserved in a variety of epithelium-colonizing bacteria, implicating its HOSCN reductase activity in a variety of host-microbe interactions. We show that an rclA mutant of the probiotic Limosilactobacillus reuteri is sensitive to HOSCN and that RclA homologs from Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides thetaiotaomicron all have potent protective activity against HOSCN when expressed in E. coli. | 2022 | 35867824 |
| 3756 | 2 | 0.9906 | Ecological antibiotic policy. Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. Salmonella spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable. | 2000 | 11051626 |
| 3755 | 3 | 0.9906 | Ecological antibiotic policy. Development of resistance to antibiotics is a major problem worldwide. The normal oropharyngeal flora, the intestinal flora and the skin flora play important roles in this development. Within a few days after the onset of antibiotic therapy, resistant Escherichia coli, Haemophilus influenzae and Staphylococcus epidermidis can be detected in the normal flora of volunteers or patients. Horizontal spread of the resistance genes to other species, e.g. SALMONELLA: spp., Staphylococcus aureus and Streptococcus pneumoniae, occurs by conjugation or transformation. An ecologically sound antibiotic policy favours the use of antibiotics with little or no impact on the normal flora. Prodrug antibiotics which are not active against the bacteria in the mouth and the intestine (before absorption) and which are not excreted to a significant degree via the intestine, saliva or skin are therefore preferred. Prodrugs such as pivampicillin, bacampicillin, pivmecillinam and cefuroxime axetil are favourable from an ecological point of view. Experience from Scandinavia supports this, since resistance to mecillinam after 20 years of use is low (about 5%) and stable. | 2000 | 10969054 |
| 199 | 4 | 0.9904 | Activation of Imd pathway in hemocyte confers infection resistance through humoral response in Drosophila. Upon microbial invasion the innate immune system of Drosophila melanogaster mounts a response that comes in two distinct but complimentary forms, humoral and cellular. A screen to find genes capable of conferring resistance to the Gram-positive Staphylococcus aureus upon ectopic expression in immune response tissues uncovered imd gene. This resistance was not dependent on cellular defenses but rather likely a result of upregulation of the humoral response through increased expression of antimicrobial peptides, including a Toll pathway reporter gene drosomycin. Taken together it appears that Imd pathway is capable of playing a role in resistance to the Gram-positive S. aureus, counter to notions of traditional roles of the Imd pathway thought largely to responsible for resistance to Gram-negative bacteria. | 2013 | 23261474 |
| 8184 | 5 | 0.9903 | Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. The emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes. | 2020 | 32523110 |
| 8173 | 6 | 0.9903 | Advancing Antibacterial Strategies: CRISPR-Phage-Mediated Gene Therapy Targeting Bacterial Resistance Genes. One of the most significant issues facing the world today is antibiotic resistance, which makes it increasingly difficult to treat bacterial infections. Regular antibiotics no longer work against many bacteria, affecting millions of people. A novel approach known as CRISPR-phage therapy may be beneficial. This technique introduces a technology called CRISPR into resistant bacteria using bacteriophages. The genes that cause bacteria to become resistant to antibiotics can be identified and cut using CRISPR. This enables antibiotics to function by inhibiting the bacteria. This approach is highly precise, unlike conventional antibiotics, so it doesn't damage our bodies' beneficial bacteria. Preliminary studies and limited clinical trials suggest that this technique can effectively target drug-resistant bacteria such as Klebsiella pneumoniae and Methicillinresistant Staphylococcus aureus (MRSA). However, challenges in phage engineering, host delivery, and the growing threat of bacterial CRISPR resistance demand urgent and strategic innovation. Our perspective underscores that without proactive resolution of these hurdles, the current hopefulness could disappear. Looking ahead, integrating next-generation Cas effectors, non-DSB editors, and resistance monitoring frameworks could transform CRISPR-phage systems from an experimental novelty into a clinical mainstay. This shift will require not only scientific ingenuity but also coordinated advances in regulatory, translational, and manufacturing efforts. | 2025 | 40990280 |
| 621 | 7 | 0.9902 | Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens. A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with β-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR. | 2022 | 36480495 |
| 9057 | 8 | 0.9902 | ABD-3, the confluence of powerful antibacterial modalities: ABDs delivering and expressing lss, the gene encoding lysostaphin. In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein. | 2024 | 39072634 |
| 8234 | 9 | 0.9902 | Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. The ability of serum complement to kill bacteria has been linked to host resistance to Gram-negative bacteria. A mechanism for killing extracellular organisms during early invasion, following release from infected phagocytic cells, or during bacteremia would contribute to a host's ability to resist disease. In fact, the ability of serum complement to kill bacteria has been linked to disease resistance. Brucella abortus are Gram-negative intracellular pathogens. Resistance to these bacteria involves the coordinated activities of the cellular and humoral immune systems. The existence of serum-resistant forms of B. abortus has been established, and it has been shown that these bacteria can resist the killing action of complement even in the presence of specific antibody. Antibody is usually necessary for complement-mediated killing of smooth (virulent) forms of Gram-negative bacteria. An anomolous situation exists with some isolates of smooth B. abortus. Sera containing high titers of specific antibody do not support killing unless they are diluted. In the bovine, this phenomenon is associated with IgG1 and IgG2 antibodies. This finding may account for the lack of positive correlation between antibody levels and resistance to disease, which has led, perhaps wrongly, to the idea that antibody and complement are not important in resistance to brucellosis. Available evidence suggests that antibody may have contradictory roles in the interactions between a host and bacteria. Avirulent (rough) forms of the organism would be rapidly killed by complement shortly after invasion, but serum-resistant smooth forms of the organism would survive and invade resident phagocytic cells. During the process of invasion and phagocytosis, the bacteria would initiate an immune response. With time, some B. abortus organisms would be released from infected phagocytic cells. In the early stages of this process, the bacteria would encounter IgM antibody and low concentrations of IgG antibody. These would cause complement-mediated killing, and infection would be restricted to resident phagocytic cells. However, the immune response to B. abortus antigens would be intensified, and IgG antibody levels would increase. High concentrations of antibody do no support complement-mediated killing of extracellular B. abortus, but the bacteria would be opsonized by antibody and complement component fragments. This would lead to increased phagocytosis of extracellular B. abortus as they appear, and concomitant extension of disease. Because of high levels of antibody would block complement-mediated killing of B. abortus, resistance to disease at this point would be dependent on cell-mediated immunity. | 1995 | 8845060 |
| 9202 | 10 | 0.9902 | Microbial avirulence determinants: guided missiles or antigenic flak? SUMMARY Avirulence (avr) determinants are incompatibility factors which elicit host plant defence responses in a gene-for-gene manner. They are produced by fungi, bacteria and viruses, and their recognition by resistance genes has been extensively studied for decades. But why should a microbe keep a molecule that allows it to be recognized? One argument is that avr genes perform some essential function and must be kept despite giving the pathogen away. Many bacterial avr determinants have been shown to be effectors, which contribute to virulence and aggressiveness. If this were always the case, mutants lacking these essential molecules would be at a serious disadvantage. Some disadvantage has been shown for a small number, but for the majority there is no effect on virulence. This has been explained by functional redundancy for bacterial and fungal avr determinants, with other molecules compensating for the deletion of these essential genes. However, this argument is counter-intuitive because by definition these individual genes are no longer essential; so why keep them? With increasing numbers of avr genes being identified, efforts to elucidate their function are increasing. In this review, we take stock of the accumulating literature, and consider what the real function of avr determinants might be. | 2005 | 20565679 |
| 616 | 11 | 0.9901 | Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection. | 2009 | 19890048 |
| 8334 | 12 | 0.9901 | Tumour progression: random mutations or an integrated survival response to cellular stress conserved from unicellular organisms? The current paradigm states that cancer progression is caused by random independent mutations, each selected for its survival advantages. The accelerated rates of phenotypic changes, the pleiotropic effect of several genes involved in progression--which need not be necessarily mutated for inducing the observed changes in cancer cell behaviour--lead us to propose an alternative hypothesis. Malignant progression might be a result of the unveiling of a cell-survival program, induced by various aggressions in the same way as the SOS system is induced and regulated in bacteria. This hypothesis depends on the homology between several genes involved in cancer progression (such as bcl2, mdm2, the mismatch repair genes, the heat shock protein genes, the pleiotropic resistance genes, the telomerase gene ...) and several genes involved in the survival of prokaryotes and eukaryotes under stress. The development of multicellular organisms could not take place without the building of a control program, exemplified by the so-called anti-oncogenes. However, this control program had to integrate some weaknesses, in order to allow for embryogenesis, growth, and wound healing. These weaknesses, neutral from an evolutionary point of view--since most cancers are sporadic and kill their hosts long after the birth of the offspring--are exploited by the survival program of individual cells, inherited from the genome of prokaryotes and unicellular eukaryotes, and repressed but not suppressed in animals. If this theory is true, it is probable that (i) no anti-oncogenes will be found in unicellular organisms, (ii) the sensitivity to mutations will be higher in genes involved in proliferation and in anti-oncogenes such as p53 and Rb, than in genes not involved in the cancer process, (iii) a process of transfer of genetic information exists in cancer cells as it exists in bacteria. The identification of the genes governing the survival program could lead to new therapeutic approaches. | 1996 | 8733476 |
| 611 | 13 | 0.9901 | The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus. | 2017 | 28728970 |
| 9524 | 14 | 0.9900 | The Role of Nitroreductases in Resistance to Nitroimidazoles. Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised. | 2021 | 34062712 |
| 9238 | 15 | 0.9900 | Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches. | 2002 | 12555790 |
| 9098 | 16 | 0.9900 | Tricyclic amine antidepressants suppress β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) by repressing mRNA levels of key resistance genes. Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of recurrent infections in humans including endocarditis, pneumonia, and toxic shock syndrome. Novel therapeutics to treat MRSA and other resistant bacteria are urgently needed. Adjuvant therapy, which uses a non-toxic compound to repotentiate the toxic effects of an existing antibiotic, is an attractive response to the growing resistance crisis. Herein, we describe the evaluation of structurally related, FDA-approved tricyclic amine antidepressants that selectively repotentiate MRSA to β-lactam antibiotics. Our results identify important structural features of the tricyclic amine class for β-lactam adjuvant activity. Furthermore, we describe the mechanism of action for our lead compound, amoxapine, and illustrate that it represses the mRNA levels of key β-lactam resistance genes in response to β-lactam treatment. This work is novel in that it highlights an important class of small molecules with the ability to simultaneously inhibit production of both β-lactamase and penicillin binding protein 2a. | 2018 | 29953721 |
| 8231 | 17 | 0.9900 | The evolutionary atavistic endotoxin and neoplastic growth. A hypothesis on the potential role of atavistic endotoxin in carcinogenesis is proposed. The presence of an antigen identical to the endotoxin of gram-negative bacteria in tumour cells is confirmed by IgM class natural specific antibodies to endotoxin (IgMNAE) in rats by immunizing them with rat tumour tissue extracts. Rat normal tissue extracts do not increase the endogenous level of natural immunity to endotoxin, indicating the absence of a foreign antigen such as endotoxin in normal cells which are naturally devoid also of other parasitic features such as invasiveness and metastases, whereas tumour cells, during a prolonged latent period of carcinogenesis, acquire resistance to harmful factors, lose most of their genetic, antigenic, morphological and biochemical properties and become parasitic so as to survive in unfavourable conditions. With the regression of the mentioned properties of cells to the atavistic parasitic state, the synthesis of dormant endotoxin is activated together with an enhanced expression of evolutionary resistance-related genes and oncogenes. Atavistic endotoxin, produced and secreted by proliferating tumour cells, should cause chronic cachexia and septic states in cancer patients, similarly as in cases of endotoxemic septic shock where the endotoxin of gram-negative bacteria is the main pathogenic factor. Thus, the implications of the hypothesis indicate the diagnostic as well as prognostic and preventive significance of evolutionary atavistic endotoxin and also of endotoxin from gram-negative bacteria in human cancers. Natural specific antibodies to endotoxin can be helpful in creating new immunotherapeutic methods. | 2011 | 20943325 |
| 734 | 18 | 0.9900 | Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance. Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the master regulator of several hundred cytoprotective and antioxidant genes. Under normal conditions, the Keap1/Nrf2 signaling protects the cellular environment by sensing deleterious oxygen radicals and inducing the expression of genes coding for proteins intended to neutralize the harmful effects of ROS. However, bacteria have developed strategies to harness Nrf2 activity to their own benefit, complicating the host response. This review is aimed to present the most recent information and probable mechanisms employed by a variety of bacteria to modulate the Keap1/Nrf2 activity in order to survive in the infected tissue. Particularly, those utilized by the Gram-positive bacteria Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis as well as by the Gram-negative bacteria Escherichia coli, Helicobacter pylori, Legionella pneumophila, Pseudomonas aeruginosa and Salmonella typhimurium. We also discuss and highlight the beneficial impact of the Keap1/Nrf2 antioxidant and anti-inflammatory role in bacterial clearance. | 2024 | 39763664 |
| 569 | 19 | 0.9900 | DNA mismatch repair and cancer. Mutations in DNA mismatch repair (MMR) genes have been associated with hereditary nonpolyposis colorectal cancer. Studies in bacteria, yeast and mammals suggest that the basic components of the MMR system are evolutionarily conserved, but studies in eukaryotes also imply novel functions for MMR proteins. Recent results suggest that mutations in MMR genes lead to tumorigenesis in mice, but DNA replication errors appear to be insufficient to initiate intestinal tumorigenesis in this model system. Additionally, MMR-deficient cell lines display a mutator phenotype and resistance to several cytotoxic agents, including compounds widely used in cancer chemotherapy. | 1998 | 9640530 |