# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7850 | 0 | 0.9880 | Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H(2)O(2)) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards. | 2021 | 33819660 |
| 8558 | 1 | 0.9880 | Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application. The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs. Our results reveal that BOF significantly reduces the leaching risks of ARGs by 22.1 %-49.3 % compared to control organic fertilizer (COF). Moreover, BOF promotes the leaching of beneficial Bacillus and, according to random forest analysis, is the most important factor in predicting ARG profiles (3.02 % increase in the MSE). Further network analysis and mantel tests suggest that enhanced nitrogen metabolism in BOF leachates could foster Bacillus biofilm formation, thereby countering antibiotic-resistant bacteria (ARB) and mitigating antibiotic resistance. In addition, linear regression analysis revealed that Bacillus biofilm-associated genes pgaD (biofilm PGA synthesis protein), slrR (biofilm formation regulator), and kpsC (capsular polysaccharide export protein) were identified as pivotal in the elimination of ARGs, which can serve as effective indicators for assessing antibiotic resistance in groundwater. Collectively, this study demonstrates that BOF as an environmentally friendly fertilizer could markedly reduce the vertical migration risks of ARGs and proposes Bacillus biofilm formation related genes as reliable indicators for monitoring antibiotic resistance in groundwater. | 2025 | 40086570 |
| 3547 | 2 | 0.9880 | Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla (TEM)), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants. | 2024 | 39165575 |
| 7900 | 3 | 0.9880 | Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics. | 2025 | 39986428 |
| 7539 | 4 | 0.9879 | Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (r(s) = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water. | 2024 | 37949160 |
| 7997 | 5 | 0.9879 | Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. | 2016 | 27014196 |
| 8058 | 6 | 0.9879 | Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars. | 2020 | 32388093 |
| 7934 | 7 | 0.9878 | Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security. | 2019 | 31085389 |
| 7898 | 8 | 0.9877 | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. | 2019 | 31442759 |
| 7933 | 9 | 0.9877 | Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Low-pressure membrane filtration was investigated at pilot scale with regard to its removal of antimicrobial resistance genes (ARGs) in conventional secondary treated wastewater plant effluents. While operating microfiltration (MF) and ultrafiltration (UF) membranes, key operational parameters for antimicrobial resistance (AMR) studies and key factors influencing AMR removal efficiencies of low-pressure membrane filtration processes were examined. The main factor for AMR removal was the pore size of the membrane. The formation of the fouling layer on capillary membranes had only a small additive effect on intra- and extrachromosomal ARG removal and a significant additive effect on mobile ARG removal. Using feeds with different ARGs abundances revealed that higher ARG abundance in the feed resulted in higher ARG abundance in the filtrate. Live-Dead cell counting in UF filtrate showed intact bacteria breaking through the UF membrane. Strong correlations between 16S rRNA genes (as surrogate for bacteria quantification) and the sul1 gene in UF filtrate indicated ARBs likely breaking through UF membranes. | 2022 | 35598662 |
| 7073 | 10 | 0.9877 | Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff. | 2019 | 31589689 |
| 7896 | 11 | 0.9877 | Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Microbial fuel cell constructed wetlands (CW-MFCs) with different circuit operation conditions and hydraulic retention time (HRT) were constructed to evaluate their ability to remove and accumulate pharmaceutical and personal care products (PPCPs) (sulfadiazine (SDZ), carbamazepine (CBZ), naproxen (NPX) and ibuprofen (IBP)) during four months running process. The abundance level of corresponding sulfonamide antibiotic resistance genes (ARGs) was also investigated. The results showed that closed circuit operation of CW-MFC contributed to the decrease in mass loading of COD, NH(4)(+)-N, PPCPs, and wastewater toxicity in the effluent. Additionally, closed circuit operation with low HRT contributed to enhancing selected PPCP mass accumulation on electrodes by electro-adsorption, and thus the higher sulfonamide ARG abundance was detected in the electrodes and effluent. Moreover, the composition of bacteria was greatly influenced by the mass accumulation of PPCPs revealed by redundancy analysis results. Procrustes analysis results further demonstrated that bacterial community contributed greatly to the ARGs profiles. Therefore, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates, and thus ARGs were effectively accumulated on electrodes. Function analysis of the bacterial community from PICRUSt predicted metagenomes revealed that closed circuit mode enhanced the abundances of the function genes of metabolic and the multiple ARGs, suggesting that closed circuit operation exhibited positive effects on metabolic process and ARG accumulation in CW-MFC system. | 2020 | 31995737 |
| 8008 | 12 | 0.9877 | Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions. | 2016 | 27384166 |
| 7991 | 13 | 0.9876 | 'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Soil contamination with antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) has becoming an emerging environmental problem. Moreover, the mixed pollutants' transfer and accumulation from soil to tuberous vegetables has posed a great threat against food security and human health. In this work, the application of two absorbing materials (maize biochar and sulfate modified eggshell) was able to reduce the poisonous effect of soil antibiotics on potato root system by stimulate the dissipation of water-soluble antibiotics in soil; and also improve food quality by increasing potato starch, protein, fat, and vitamins. Meanwhile, both amendments could effectively decrease the classes and the accumulative abundance of ARB and ARGs (sulI, sulII, catI, catII, ermA, ermB) in the edible parts of potato. The lowest abundance of ARGs was detected in the biochar application treatment, with the accumulative ARG level of 8.9 × 10(2) and 7.2 × 10(2) copies mL(-1) in potato peel (sull + catI + ermA) and tuberous root (sulI), respectively. It is the first study to demonstrate the feasibility of biochar and eggshell derived from agricultural wastes as green absorbing materials to reduce soil antibiotic, ARB, and ARGs accumulation risk in tuberous vegetable. | 2018 | 29945818 |
| 6917 | 14 | 0.9876 | Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use. | 2023 | 36657587 |
| 8021 | 15 | 0.9876 | The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. The variation of antibiotic resistance genes (ARGs) and influential factors in pig manure composting were investigated by conducting simulated composting tests using four different supplement materials (wheat straw, corn straw, poplar sawdust and spent mushroom). The results show that the relative abundance of total ARGs increased by 0.19-1.61 logs after composting, and tetX, sulI, sulII, dfrA1 and aadA were the major contributors. The variations of ARG profiles and bacterial communities throughout the composting were clearly divided into mesophilic-thermophilic and cooling-maturation stages in all tests, while different supplement materials did not exert a noticeable influence. Network analysis demonstrated the diversity of bacterial hosts for ARGs, the existence of multiple antibiotic resistant bacteria, and the weak correlations between ARGs and physicochemical factors in the composting piles. Of note, integron intI1 and Mycobacterium (a potential pathogen) were positively correlated with eight and four ARGs, respectively, that displayed increased abundance after composting. | 2020 | 32109697 |
| 7540 | 16 | 0.9875 | Extended chloramination significantly enriched intracellular antibiotic resistance genes in drinking water treatment plants. Chloramination and chlorination are both strong barriers that prevent the transmission of potential pathogens to humans through drinking water. However, the comparative effects of chloramination and chlorination on the occurrence of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) remain unknown. Herein, the antibiotic resistome in water before and after chloramination or chlorination was analyzed through metagenomic sequencing and then verified through quantitative real-time polymerase chain reaction (qPCR). After the treatment of 90 min, chloramination led to higher enrichment of the total relative abundance of intracellular ARGs (iARGs) in water than chlorination, whereas chlorination facilitated the release of more extracellular ARGs (eARGs) than chloramination. According to redundancy and Pearson's analyses, the total concentration of the observed iARGs in the finished water exhibited a strong positive correlation with ammonium nitrogen (NH(4)(+)-N) concentration, presenting a linear upward trend with an increase in the NH(4)(+)-N concentration. This indicated that NH(4)(+)-N is a crucial driving factor for iARG accumulation during chloramination. iARG enrichment ceases if the duration of chloramination is shortened to 40 min, suggesting that shortening the duration would be a better strategy for controlling iARG enrichment in drinking water. These findings emphasized the potential risk of antibiotic resistance after extended chloramination, shedding light on the control of transmission of antibiotic-resistant bacteria through water by optimizing disinfection procedures in DWTPs. | 2023 | 36739658 |
| 6996 | 17 | 0.9875 | Implications of vermicompost on antibiotic resistance in tropical agricultural soils - A study in Hainan Island, China. The contamination of antibiotic resistance genes (ARGs) associated with animal manure fertilization have attracted a global concern. Vermicompost has been widely popularized as an eco-friendly alternative to recycle animal manure on Hainan Island, China. However, the effects of vermicompost application on ARG spread and environmental fate in tropical agricultural soils remains undefined. Herein, the spatial prevalence and vertical behavior of ARGs in the soil profiles of vermicompost-applied agricultural regions were explored by a large-scale survey across Hainan Island. The results showed that although vermicompost application marginally enhanced the load of ARG pollution in the soil in Hainan, the ARGs derived from vermicompost did not eventually accumulate in the soil profile. The increase rate of ARGs in 40-60 cm soil layer was only 0.0015 % compared with that of unfertilized soil. Interestingly, vermicompost application reduced the abundance of high-risk ARGs, such as bla(NDM) and bla(ampC), by approximately one order of magnitude. Vermicompost was also observed to increase the abundance of beneficial bacteria, like Clostridium, and decrease those of Acidobacteriae, Planctomycetes and Verrucomicrobiae, which caused changes in the potential host bacteria of soil ARGs. Mobile genetic elements were further proven to be an essential factor that regulated the vertical dynamics of ARGs in vermicomposted soil, with a direct influence coefficient of 0.9975. This study demonstrated that the controllable risk associated with vermicompost application provided useful information to effectively reduce the threat of ARGs and promote the development of sustainable agriculture on Hainan Island. | 2023 | 37271403 |
| 7143 | 18 | 0.9875 | Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla(TEM)) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log(10)(copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M(2) = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. | 2018 | 29501852 |
| 7543 | 19 | 0.9875 | Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R(1) and R(2), were constructed and optimized for treating SW from two pig farms, identified as SW(1) and SW(2). R(2) showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R(1) and 14.1 % in R(2), respectively. Mantel's test revealed that pH, NH(4)(+)-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW. | 2024 | 39153702 |