# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8577 | 0 | 0.9979 | Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats. | 2024 | 39078126 |
| 7813 | 1 | 0.9979 | A framework predicting removal efficacy of antibiotic resistance genes during disinfection processes with machine learning. Disinfection has been applied widely for the removal of antibiotic resistance genes (ARGs) to curb the spread of antibiotic resistance. Quantitative polymerase chain reaction (qPCR) is the most used method to quantify the damage of DNA thus calculating the ARG degradation during disinfection but suffers the deviation due to the limitation of amplicon length. In contrast, transformation assay more accurately measures ARG deactivation based on expression of disinfected ARG in the receiving bacteria but is typically laborious and material-intensive. This work applied machine learning (ML) to develop a framework by using qPCR results as a proxy to estimate the transformation assay measurements during disinfection with chlorine (FAC), ultraviolet (UV(254)), ozone (O(3)), and hydrogen peroxide/ultraviolet (UV/H(2)O(2)) for multiple kinds of ARGs. ARG degradation rates and deactivation rates were well predicted with the optimal correlation coefficient (R(2)) of all test sets > 0.926 and > 0.871, respectively. Besides, by concatenating the ARG degradation and deactivation predictive models, ARG removal efficiency under given disinfection conditions was directly predicted as the loss of transformation activity with R(2) > 0.828. Furthermore, an online platform was built to provide users with access to the developed ML models for rapid and accurate evaluation of ARG removal efficiency. | 2025 | 40179779 |
| 7444 | 2 | 0.9979 | Microbiome and Resistome Profiles along a Sewage-Effluent-Reservoir Trajectory Underline the Role of Natural Attenuation in Wastewater Stabilization Reservoirs. Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater. | 2023 | 37199629 |
| 7541 | 3 | 0.9979 | The knock-on effects of different wastewater feeding modes: Change in microbial communities versus resistance genes in pilot-scale aerobic sludge granulation reactors. To explore the effects of wastewater feeding modes on the formation of aerobic granular sludge (AGS) and the complex relationships between resistance genes and bacteria, two pilot-scale sequencing batch reactors (SBRs) were established. The SBR with influent wastewater introduced uniformly through pipes at bottom was designated as BSBR, and the SBR with inlet wastewater flowing directly from top was TSBR. BSBR formed dense AGS due to uniform wastewater feeding at bottom, while TSBR failed to cultivate AGS. Metagenomic sequencing illustrated that rapid growth of AGS in BSBR was accompanied with increase of antibiotic resistance genes (ARGs) abundance, but ARGs diminished when the size of AGS was stable. The ARGs continued to elevate in TSBR, and abundance of metal resistance genes (MRGs) was always higher than that in BSBR. Two reactors had markedly different bacterial community, microbes in BSBR owned stronger activity, conferred greater potential to proliferate. AdeF in two systems had the most complex gene-bacteria relationships which would undergo HGT within bacterial genus. The different feeding modes of wastewater directly led to the changing size of sludge, which caused knock-on effects of variations in the abundance of microbial communities and resistance genes. This study provided promising suggestions for the rapid cultivation of AGS and control of resistance genes at pilot-scale. | 2023 | 37257591 |
| 8570 | 4 | 0.9979 | Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition. Landfill is important reservoirs of residual antibiotics and antibiotic resistance genes (ARGs), but the mechanism of landfill application influence on antibiotic resistance remains unclear. Although refuse decomposition plays a crucial role in landfill stabilization, its impact on the antibiotic resistance has not been well characterized. To better understand the impact, we studied the dynamics of ARGs and the bacterial community composition during refuse decomposition in a bench-scale bioreactor after long term operation (265d) based on metagenomics analysis. The total abundances of ARGs increased from 431.0ppm in the initial aerobic phase (AP) to 643.9ppm in the later methanogenic phase (MP) during refuse decomposition, suggesting that application of landfill for municipal solid waste (MSW) treatment may elevate the level of ARGs. A shift from drug-specific (bacitracin, tetracycline and sulfonamide) resistance to multidrug resistance was observed during the refuse decomposition and was driven by a shift of potential bacteria hosts. The elevated abundance of Pseudomonas mainly contributed to the increasing abundance of multidrug ARGs (mexF and mexW). Accordingly, the percentage of ARGs encoding an efflux pump increased during refuse decomposition, suggesting that potential bacteria hosts developed this mechanism to adapt to the carbon and energy shortage when biodegradable substances were depleted. Overall, our findings indicate that the use of landfill for MSW treatment increased antibiotic resistance, and demonstrate the need for a comprehensive investigation of antibiotic resistance in landfill. | 2018 | 29660875 |
| 8563 | 5 | 0.9978 | Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS). However, the roles of EPS in the spread of ARGs have not been sufficiently explored, resulting in an insufficient understanding of the contribution of each EPS component and a lack of analysis on the complex interactions between EPS and ARGs. This study systematically explored the overlooked role of EPS in the transmission of ARGs within microalgae-bacteria systems. The current results showed that the potential of the microalgae-bacteria system for treating antibiotic wastewater. The tightly bound-EPS (TB-EPS) can acquire the higher absolute abundances of ARGs compared with the loosely bound-EPS (LB-EPS). The correlation coefficient between polysaccharides and TB-EPS ARGs was higher than that between polysaccharides and LB-EPS ARGs. The gene patterns of LB-EPS closely clustered with those of TB-EPS, while intracellular ARG gene patterns differed from both TB-EPS and LB-EPS. Metagenomic analyses indicated that the relative abundances of sul1 and sul2 were considerably higher at the beginning stage compared to the end stage. The abundance of Achromobacter, increased by the end stage, aligning with its potential to produce exopolysaccharide. Additionally, the absolute abundance of genes encoding exopolysaccharides (nagB and galE) and conjugative transfer transcription regulator (traF), increased over time. These findings enhanced our comprehension of the significance of EPS on the fate of ARGs in microalgae-bacteria systems during the treatment of antibiotic-contaminated wastewater. | 2025 | 39879767 |
| 7508 | 6 | 0.9978 | Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants. | 2023 | 37738943 |
| 7610 | 7 | 0.9978 | Coagulation promotes the spread of antibiotic resistance genes in secondary effluents. Wastewater treatment plants (WWTPs) are biological hotspots receiving the residual antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) that greatly influence the spread of antibiotic resistance in the environment. A common method used in WWTPs for the purification of secondary effluent is coagulation. Notwithstanding the increasing health concern of antibiotic resistance in WWTPs, the impact of coagulation on the emergence and spread of antibiotic resistance remains unclear. To shed light on this, our study investigated the behavior of four representative ARB types (tetracycline, sulfamethoxazole, clindamycin, and ciprofloxacin resistance) during the coagulation process in a model wastewater treatment plant. Our search showed a significant reduction in the presence of ARBs after either PAC or FeCl(3) coagulation, with removal efficiencies of 95% and 90%, respectively. However, after 4 days of storage, ARB levels in the coagulated effluent increased by 6-138 times higher than the original secondary effluent. It suggests a potential resurgence and spread of antibiotic resistance after coagulation. Detailed studies suggest that coagulants, particularly PAC, may facilitate the transfer of ARGs among different bacterial species by the enhanced cell-cell contact during coagulation-induced bacterial aggregation. This transfer is further enhanced by the factors such as auxiliary mixing, longer incubation time and ideal operating temperatures. In addition, both PAC and FeCl(3) affected gene expression associated with bacterial conjugation, leading to an increase in conjugation efficiency. In conclusion, while coagulation serves as a purification method, it might inadvertently boost the spread of ARGs during tertiary wastewater treatment. This underscores the importance of implementing subsequent measures to mitigate this effect. Our findings provide a deeper understanding of the challenges posed by bacterial antibiotic resistance in wastewater and pave the way for devising more effective ARB and ARG management strategies. | 2024 | 38810683 |
| 8539 | 8 | 0.9978 | Effects of quaternary ammonium disinfectants on human pathogenic bacteria in anaerobic sludge digestion: Dose-response and resistance variation. Sewage sludge is a critical reservoir for biological pollutants, and its harmless disposal remains a major issue. Quaternary ammonium compounds (QACs) as typical household disinfectants are inevitably concentrated in sewage sludge, and have the potential to affect human pathogenic bacteria (HPBs) that remain poorly understood. This study found that the relative abundance of HPBs in digesters was decreased by 10 - 20 % at low QACs dose, but increased by 238 - 591 % at high QACs dose. Mechanistic analysis revealed that low QACs doses promoted functional hydrolytic/fermentative bacteria and their metabolism by stimulating extracellular polymeric substances secretion and enhancing resistance to QACs. Conversely, high QAC doses decreased microbial biomass and developed QACs and antibiotic resistance of HPBs by increasing cell membrane permeability and triggering oxidative stress, resulting in deteriorating sanitation performance. These findings provide advanced insights into the potential function and hazards of exogenous QACs on the biosafety of digestate. | 2025 | 39505280 |
| 7450 | 9 | 0.9978 | Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance. | 2023 | 37681947 |
| 6954 | 10 | 0.9978 | Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer. | 2020 | 31818620 |
| 6941 | 11 | 0.9978 | Tertiary Wastewater Treatment Processes Can Be a Double-Edged Sword for Water Quality Improvement in View of Mitigating Antimicrobial Resistance and Pathogenicity. Despite the high removal efficiency for chemical pollutants by tertiary wastewater treatment processes (TWTPs), there is no definite conclusion in terms of microbial risk mitigation yet. This study utilized metagenomic approaches to reveal the alterations of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), their co-occurrence, and potential hosts during multiple TWTPs. Results showed that the TWTPs reduced chemical pollutants in wastewater, but the denitrifying biofilter (DB) significantly increased the absolute abundances of selected antibiotic-resistant bacteria and ARGs, and simultaneously elevated the relative abundances of ARGs and VFGs through the enrichment of multidrug resistance and offensive genes, respectively. Moreover, the co-occurrence of ARGs and VFGs (e.g., bacA-tapW, mexF-adeG) was only identified after the DB treatment and all carried by Pseudomonas. Then, the ultraviolet and constructed wetland treatment showed good complementarity for microbial risk reduction through mitigating antibiotic resistance and pathogenicity. Network and binning analyses showed that the shift of key operational taxonomic units affiliating to Pseudomonas and Acinetobacter may contribute to the dynamic changes of ARGs and VFGs during the TWTPs. Overall, this study sheds new light on how the TWTPs affect the antibiotic resistome and VFG profiles and what TWTPs should be selected for microbial risk mitigation. | 2023 | 36538014 |
| 8536 | 12 | 0.9978 | New insights into bioaugmented removal of sulfamethoxazole in sediment microcosms: degradation efficiency, ecological risk and microbial mechanisms. BACKGROUND: Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS: The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS: Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract. | 2024 | 38424602 |
| 7559 | 13 | 0.9978 | Fate of antibiotic resistance genes and resistant bacteria under various operating temperatures of sludge anaerobic digestion. This study investigates the impact of varying temperatures on reducing antibiotic resistance genes (ARGs) during anaerobic digestion (AD) of mixed raw sludge in wastewater treatment plants. Employing three different operating temperatures, i.e., 37, 55, and 65 °C, the research aims to identify how these conditions affect the diminution of resistant genes. The results, based on quantitative PCR analysis and metagenomic sequencing, show that higher temperatures significantly enhance the reduction of ARGs, with the most substantial decreases observed at 65 °C. This temperature-dependent reduction correlates with changes in the microbial community structure, where specific bacterial genera like Alicycliphilus, Macellibacteroides, Dokdonella, Ahniella, Thauera, and Zoogloea associated with ARGs exhibit decreased abundance at elevated temperatures. The study infers that AD at higher temperatures could be a more effective strategy in mitigating the spread of antibiotic resistance in the environment, suggesting a pivotal role of operational temperature in optimizing wastewater treatment processes for ARGs attenuation. The findings highlight the need for further research to refine AD protocols, aiming to minimize the environmental impact of antibiotic resistance dissemination. | 2025 | 40662898 |
| 7704 | 14 | 0.9978 | Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies. | 2024 | 38193687 |
| 7521 | 15 | 0.9978 | Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion. The rhizosphere is an extremely important component of the "one health" scenario by linking the soil microbiome and plants, in which the potential enrichment of antibiotic resistance genes (ARGs) might ultimately flow into the human food chain. Despite the increased occurrence of soil-borne diseases, which can lead to increased use of pesticides and antibiotic-producing biocontrol agents, the understanding of the dynamics of ARG spread in the rhizosphere is largely overlooked. Here, tomato seedlings grown in soils conducive and suppressive to the pathogen Ralstonia solanacearum were selected as a model to investigate ARG spread in the rhizosphere with and without pathogen invasion. Metagenomics data revealed that R. solanacearum invasion increased the density of ARGs and mobile genetic elements (MGEs). Although we found ARGs originating from human pathogenic bacteria in both soils, the enrichment was alleviated in the suppressive soil. In summary, the suppressive soil hindered ARG spread through pathogen suppression and had a lower number of taxa carrying antibiotic resistance. | 2023 | 36683960 |
| 7616 | 16 | 0.9978 | Transport of antibiotic resistance genes in the landfill plume: Experiment and numerical modeling. Antibiotic resistance genes (ARGs) in the landfill site would potentially seep into groundwater by leachate infiltration, which poses great threat of ARGs dissemination through groundwater flow. However, the transport characteristics of ARGs in the landfill plume are still unclear, impeding the risk management and remediation of landfill sites. This study carried out a series of column experiments to investigate the transport of various ARGs in the landfill plume and its influencing factors. Besides, a numerical model was also developed to simulate the transport of ARGs in the porous media, which could determine the attachment and decay rates of ARGs in various scenarios. Experimental results showed that high contents of organic matter and corresponding antibiotics in the landfill plume promoted the transport of antibiotic-resistant bacteria (ARB) and reduced the decay rates of intracellular ARGs (iARGs) in the porous media. Inorganic ions such as Cl(-) and SO(4)(2-) inhibited the mobility of ARB, while they had little influence on iARGs decay. Extracellular ARGs (eARGs) in plasmids exhibited higher decay rate in pore water, leading to shorter transport distance in porous media. In the landfill plume, sul1 had higher mobility than aadA and ermB, which was tightly correlated with its lower decay rate in groundwater and the smaller bacterial host. The decrease of particle size greatly inhibited the transport of ARGs in porous media due to the attachment of ARB on sand surface, while the attached ARGs would easily detach from sand surface during background water flushing. This study could guide the accurate risk assessment of ARGs in the landfill plume as well as the optimization of management strategy for landfill site. | 2025 | 40320129 |
| 8665 | 17 | 0.9978 | A Glyphosate-Based Herbicide Cross-Selects for Antibiotic Resistance Genes in Bacterioplankton Communities. Agrochemicals often contaminate freshwater bodies, affecting microbial communities that underlie aquatic food webs. For example, the herbicide glyphosate has the potential to indirectly select for antibiotic-resistant bacteria. Such cross-selection could occur if the same genes (encoding efflux pumps, for example) confer resistance to both glyphosate and antibiotics. To test for cross-resistance in natural aquatic bacterial communities, we added a glyphosate-based herbicide (GBH) to 1,000-liter mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes in bacterial communities with shotgun metagenomic sequencing and annotated metagenome-assembled genomes (MAGs) for the presence of known antibiotic resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that high doses of GBH significantly increased ARG frequency and selected for multidrug efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH was predictable based on the number of ARGs in their genomes (17% of variation explained) and, to a lesser extent, by resistance mutations in EPSPS. Together, these results indicate that GBHs can cross-select for antibiotic resistance in natural freshwater bacteria. IMPORTANCE Glyphosate-based herbicides (GBHs) such as Roundup formulations may have the unintended consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in previous experiments. However, the effects of GBHs on ARGs remain unknown in natural aquatic communities, which are often contaminated with pesticides from agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here, we performed a freshwater mesocosm experiment showing that a GBH strongly selects for ARGs, particularly multidrug efflux pumps. These selective effects were evident after just a few days, and the ability of bacteria to survive and thrive after GBH stress was predictable by the number of ARGs in their genomes and, to a lesser extent, by mutations in EPSPS. Intensive GBH application may therefore have the unintended consequence of selecting for ARGs in natural freshwater communities. | 2022 | 35266795 |
| 6985 | 18 | 0.9978 | Elevated CO(2) Increased Antibiotic Resistomes in Seed Endophytes: Evidence from a Free-Air CO(2) Enrichment (FACE) Experiment. Climate warming affects antibiotic resistance genes (ARGs) in soil and the plant microbiome, including seed endophytes. Seeds act as vectors for ARG dissemination in the soil-plant system, but the impact of elevated CO(2) on seed resistomes remains poorly understood. Here, a free-air CO(2) enrichment system was used to examine the impact of elevated CO(2) on seed-associated ARGs and seed endophytic bacteria and fungi. Results indicated that elevated CO(2) levels significantly increased the relative abundance of seed ARGs and mobile genetic elements (MGEs), especially those related to beta-lactam resistance and MGEs. Increased CO(2) levels also influenced the composition of seed bacterial and fungal communities and the complexity of bacteria-fungi interactions. Fungi were more sensitive to changes in the CO(2) level than bacteria, with deterministic processes playing a greater role in fungal community assembly. Co-occurrence network analysis revealed a stronger correlation between fungi and ARGs compared to bacteria. The structure equation model (SEM) showed that elevated CO(2) directly influenced seed resistomes by altering bacterial composition and indirectly through bacteria-fungi interactions. Together, our work offers new insights into the effects of elevated CO(2) on antibiotic resistomes in the seed endosphere, highlighting their increased dissemination potential within soil-plant systems and the associated health risks in a changing environment. | 2024 | 39680930 |
| 6976 | 19 | 0.9978 | Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems. | 2025 | 39662352 |