# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 102 | 0 | 0.9024 | Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks. | 1985 | 3883148 |
| 347 | 1 | 0.8996 | A novel plasmid gene involved in bacteriophage PRD1 infection and conjugative host-range. PRD1 infects bacteria carrying IncN plasmids by binding to their conjugative pili. Mutations in a plasmid locus kikA close to the pilus region result in PRD1 resistance and reduced conjugation proficiency to Klebsiella but not to Escherichia coli. One of the two genes of kikA is sufficient to restore both normal phenotypes. PRD1 binds to cells carrying the mutant plasmid but fails to inject its genome. | 1996 | 8812786 |
| 528 | 2 | 0.8973 | Effect of dimethyl sulphoxide on the expression of nitrogen fixation in bacteria. Storage in dimethyl sulphoxide (DMSO) of Escherichia coli K12 hybrids carrying nif+ genes from Klebsiella pneumoniae can result in selection of a defective nitrogen-fixing phenotype. Similar results are obtained with E. coli K12 hybrids containing the nitrogen-fixing capacity from Rhizobium trifolii. DMSO appears to affect particular inner membrane proteins associated with energy metabolism in E. coli K12 and four chromosomal regions (chlD, chlG, his and unc) are associated with resistance to DMSO. | 1977 | 332135 |
| 333 | 3 | 0.8945 | Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product. | 1978 | 360222 |
| 555 | 4 | 0.8911 | Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. The Dsb proteins are involved in disulfide bond formation, reduction and isomerisation in a number of Gram-negative bacteria. Mutations in dsbA or dsbB, but not dsbC, increase the proportion of proteins with free thiols in the periplasm compared to wild-type. We investigated the effects of mutations in these genes on the bacterial resistance to mercuric and cadmium salts. Mutations in genes involved primarily in disulfide formation (dsbA and dsbB) generally enhanced the sensitivity to Hg2+ and Cd2+ while a mutation of the dsbC gene (primarily an isomerase of disulfide bonds) had no effect. Mutations of the dsb genes had no effect on the expression of the mercury-resistance determinants of the transposon Tn501. | 1999 | 10234837 |
| 534 | 5 | 0.8906 | Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium. | 1990 | 2148164 |
| 328 | 6 | 0.8903 | Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin. | 2000 | 10796024 |
| 9980 | 7 | 0.8900 | A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate. | 1998 | 9776589 |
| 346 | 8 | 0.8898 | Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria. | 2004 | 15126486 |
| 575 | 9 | 0.8898 | Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+. | 1996 | 8955293 |
| 339 | 10 | 0.8892 | Multiple mechanisms of resistance to cisplatin toxicity in an Escherichia coli K12 mutant. The mechanisms underlying cellular resistance to the antitumor drug cis-diamminedichloro-platinum(II) (CDDP) were studied in Escherichia coli K12. A bacterial strain (MC4100/DDP) was selected from the MC4100 wild-type strain after growth for four cycles in CDDP. MC4100/DDP bacteria showed a high level of resistance and exhibited various modifications including (1) a decrease in drug uptake and platinum/DNA binding which only partly contributed to resistance, (2) an increase in glutathione content not involved in the resistant phenotype, (3) an increase in DNA repair capacity. Resistance was unmodified by introducing a uvrA mutation which neutralizes the excision-repair pathway. In contrast, it was abolished by deletion of the recA gene which abolishes recombination and SOS repair but also by a mutation in the recA gene leading to RecA co-protease minus (no SOS induction). RecA protein was unchanged in MC4100/DDP but the expression of RecA-dependent gene(s) was required for CDDP resistance. The regulation of genes belonging to the SOS regulon was analysed in MC4100/DDP by monitoring the expression of sfiA and recA::lacZ gene fusions after UV irradiation. These gene fusions were derepressed faster and the optimal expression was obtained for a lower number of UV lesions in MC4100/DDP, suggesting a role of RecA co-protease activity in the mechanism of resistance to CDDP in this E. coli strain. | 1994 | 7974517 |
| 530 | 11 | 0.8889 | Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far. | 1993 | 8515229 |
| 576 | 12 | 0.8889 | Caenorhabditis elegans defective-pharynx and constipated mutants are resistant to Orsay virus infection. C. elegans animals with a compromised pharynx accumulate bacteria in their intestinal lumen and activate a transcriptional response that includes anti-bacterial response genes. In this study, we demonstrate that animals with defective pharynxes are resistant to Orsay virus (OrV) infection. This resistance is observed for animals grown on Escherichia coli OP50 and on Comamonas BIGb0172, a bacterium naturally associated with C. elegans . The viral resistance observed in defective-pharynx mutants does not seem to result from constitutive transcriptional immune responses against viruses. OrV resistance is also observed in mutants with defective defecation, which share with the pharynx-defective perturbations in the regulation of their intestinal contents and altered lipid metabolism. The underlying mechanisms of viral resistance in pharynx- and defecation-defective mutants remain elusive. | 2024 | 38590801 |
| 538 | 13 | 0.8887 | The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli. In a culture of Escherichia coli K12 gal (lambdadg), cells which form large colonies on agar plates containing galactose and thiomethyl beta-D-galactoside (TMG) appear at high frequency. These clones are resistant to growth inhibition by TMG on galactose minimal medium. Biochemical studies of the steady-state levels of galactokinase and UDPgalactose 4-epimerase suggest that the resistant clones have extra copies of the genes for the galactose-metabolizing enzymes. The mutation for TMG resistance is not located in either the bacterial or the bacteriophage genome, but is probably due to an aberrant association between cell and prophage DNA. Mapping the TMG-resistant characteristic by phage P1 indicates that TMG-resistant bacteria posses at least two GAL+ OPERONS, ONE OF WHICH IS COTRANSDUCIBLe with bio+. In addition, TMG-resistant bacteria behave like lambdadg polylysogens when challenged with the phage lambdaI90c17. From these genetic experiments we conclude that TMG-resistant bacteria arise by duplication of the lambdadg prophage. Finally, gal+ bacteria which carry a single, additional, lambdadg prophage are TMG-resistant. TMG resistance is probably a gal+ gene dosage effect. | 1978 | 344832 |
| 356 | 14 | 0.8886 | Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes. | 2000 | 10781091 |
| 348 | 15 | 0.8886 | Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? Antibiotic-producing soil bacteria of the genus Streptomyces form a huge natural reservoir of antibiotic resistance genes for the dissemination within the soil community. Streptomyces plasmids encode a unique conjugative DNA transfer system clearly distinguished from classical conjugation involving a single-stranded DNA molecule and a type IV protein secretion system. Only a single plasmid-encoded protein, TraB, is sufficient to translocate a double-stranded DNA molecule into the recipient in Streptomyces matings. TraB is a hexameric pore-forming ATPase that resembles the chromosome segregator protein FtsK and translocates DNA by recognizing specific 8-bp repeats present in the plasmid clt locus. Mobilization of chromosomal genes does not require integration of the plasmid, because TraB also recognizes clt-like sequences distributed all over the chromosome. | 2012 | 23082971 |
| 393 | 16 | 0.8885 | Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. The Red recombinase system of bacteriophage Lambda has been used to inactivate chromosomal genes in bacteria using PCR products. In this study, we describe the replacement of the ampicillin resistance marker of helper plasmids pKD46 and pCP20 by a gentamicin resistance gene to disrupt chromosomal genes and then to eliminate FRT flanked resistance gene in multiple antibiotic-resistant Salmonella enterica strains. | 2008 | 18619499 |
| 112 | 17 | 0.8885 | Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor. | 2004 | 15500981 |
| 617 | 18 | 0.8883 | Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. The genes hbl3, cpl1 and cpl7 coding for the pneumococcal phage lytic enzymes HBL3, CPL1 and CPL7, respectively, have been cloned into shuttle plasmids that can replicate in Streptococcus pneumoniae and Escherichia coli. All these genes were expressed in E. coli under the control of either the lytP promoter of the lytA gene, which codes for the major pneumococcal autolysin, or the promoter of the tetracycline-resistance gene (tetP). In contrast, cpl1 and cpl7 genes that code for lysozymes were expressed in pneumococcus only under the control of tetP, whereas the hbl3 gene that codes for an amidase can be expressed using either promoter. The phage lysozymes or amidase expressed in S. pneumoniae M31, a mutant deleted in the lytA gene coding for short chains, were placed under physiological control since these transformed bacteria grew as normal 'diplo' cells during the exponential phase and underwent autolysis only after long incubation at 37 degrees C. The lysis genes appear to be expressed constitutively in the transformed pneumococci, since sharply defined lysis of these cultures could be induced prematurely during the exponential phase of growth by addition of sodium deoxycholate. | 1993 | 8472929 |
| 338 | 19 | 0.8883 | Repair by genetic recombination in bacteria: overview. DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by X-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, the newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into high-molecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB- AND RECC but is greatly slowed in recF- mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultra-violet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur. The R1 restriction endonuclease from E. COli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli. | 1975 | 1103833 |