# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2989 | 0 | 0.8844 | Occurrence of Antibiotic Resistant Bacteria in Flours and Different Plant Powders Used in Cuisine. In recent years, several alimentary diseases have been connected with the consumption or tasting of raw flour and dough. Microbiological quality concern is also raising due to increased consumer demand for plant powders, while some of them can be consumed without prior thermal processing. In this study, we have focused on the occurrence of antibiotic-resistant coliform bacteria and enterococci in flour, plant powder and dough from Slovak retail. Our results indicated the presence of both total and antibiotic-resistant coliform bacteria and enterococci in the flour and powder samples. Lower numbers of the total, as well as resistant bacteria, were detected in flours compared to plant powders. Coliform bacteria isolates were predominantly identified as Klebsiella spp. and Enterobacter spp. Ampicillin resistance appeared in 97% of isolates followed by chloramphenicol resistance (22%) and tetracycline resistance (17%). The presence of the bla(SHV) gene was confirmed in 13% of isolates. The tetA and tetE genes were present in 25% of isolates of coliform bacteria. The presence of enterococci was detected only in plant powders. Antibiotic-resistant strains were identified as the following: Enterococcus casseliflavus, E. gallinarium and E. faecium. Despite the isolates showing resistance to vancomycin, the presence of the vanA gene was not detected. The majority of antibiotic-resistant isolates belonged to the group of medium biofilm producers. None of these isolates showed efflux pump overproduction. Antibiotic-resistant coliform bacteria and enterococci were not detected in the processed doughs. | 2022 | 36429175 |
| 3063 | 1 | 0.8804 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779633 |
| 1259 | 2 | 0.8794 | Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. AIMS: This study investigated the tetracycline resistance potential of heterotrophic bacteria isolated from twenty-four freshwater fin-fish culture ponds in Andhra Pradesh, India. METHODS AND RESULTS: A total of 261 tetracycline resistant bacteria (tetR) were recovered from pond water, pond sediment, fish gills, fish intestine, and fish feed. Bacteria with high tetracycline resistance (tetHR) (n = 30) that were resistant to tetracycline concentrations above 128 μg mL-1 were predominantly Lactococcus garvieae followed by Enterobacter spp., Lactococcus lactis, Enterobacter hormaechei, Staphylococcus arlettae, Streptococcus lutetiensis, Staphylococcus spp., Brevundimonas faecalis, Exiguobacterium profundum, Lysinibacillus spp., Stutzerimonas stutzeri, Enterobacter cloacae, and Lactococcus taiwanensis. Resistance to 1024 μg mL-1 of tetracycline was observed in L. garvieae, S. arlettae, Enterobacter spp., B. faecalis. Tet(A) (67%) was the predominant resistance gene in tetHR followed by tet(L), tet(S), tet(K), and tet(M). At similar concentrations of exposure, tetracycline procured at the farm level (69.5% potency) exhibited lower inhibition against tetHR bacteria compared to pure tetracycline (99% potency). The tetHR bacteria showed higher cross-resistance to furazolidone (100%) followed by co-trimoxazole (47.5%) and enrofloxacin (11%). CONCLUSIONS: The maximum threshold of tetracycline resistance at 1024 μg mL-1 was observed in S. arlettae, Enterobacter spp., B. faecalis, and L. garvieae and tet(A) was the major determinant found in this study. | 2023 | 36958862 |
| 5390 | 3 | 0.8778 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |
| 1227 | 4 | 0.8771 | Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance. | 1990 | 2282290 |
| 5395 | 5 | 0.8766 | Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION: We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use. | 2018 | 29786847 |
| 6013 | 6 | 0.8766 | Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria. | 2011 | 21478643 |
| 5403 | 7 | 0.8766 | Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan. To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses. | 2013 | 23930694 |
| 5445 | 8 | 0.8761 | Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. Selective pressure in the aquatic environment of intensive fish farms leads to acquired antibiotic resistance. This study used the broth microdilution method to measure minimum inhibitory concentrations (MICs) of 15 antibiotics against 104 Aeromonas spp. strains randomly selected among bacteria isolated from Sparus aurata reared in six Italian mariculture farms. The antimicrobial agents chosen were representative of those primarily used in aquaculture and human therapy and included oxolinic acid (OXA), ampicillin (AM), amoxicillin (AMX), cephalothin (CF), cloramphenicol (CL), erythromycin (E), florfenicol (FF), flumequine (FM), gentamicin (GM), kanamycin (K), oxytetracycline (OT), streptomycin (S), sulfadiazine (SZ), tetracycline (TE) and trimethoprim (TMP). The most prevalent species selected from positive samples was Aeromonas media (15 strains). The bacterial strains showed high resistance to SZ, AMX, AM, E, CF, S and TMP antibiotics. Conversely, TE and CL showed MIC(90) values lower than breakpoints for susceptibility and many isolates were susceptible to OXA, GM, FF, FM, K and OT antibiotics. Almost all Aeromonas spp. strains showed multiple antibiotic resistance. Epidemiological cut-off values (ECVs) for Aeromonas spp. were based on the MIC distributions obtained. The results showed a high frequency of Aeromonas spp. contamination in Sparus aurata reared on the Italian coast and an elevated biodiversity in isolated bacterial strains. Aeromonas isolates comprise potentially pathogenic species for humans, often resistant to several antibiotics and able to transfer the genes responsible for antibiotic resistance to microorganisms pathogenic for humans throughout the food chain. The few ECV studies available on many antibiotics against Aeromonas spp. strains isolated from the aquaculture environment highlight the need for further research in this area, while regular monitoring programmes should be stepped up to check for antibiotic resistance. | 2018 | 30081345 |
| 5394 | 9 | 0.8759 | Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5. | 2005 | 15726980 |
| 3653 | 10 | 0.8758 | Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading. | 2019 | 31374082 |
| 3669 | 11 | 0.8758 | Detection of clinically relevant antimicrobial resistance determinants in warm-blooded marine animals in Livingston Island (South Shetland Islands, Antarctica): A field-based molecular genetics study. Molecular genetic studies of stools were performed to assess the spread of some clinically relevant antimicrobial resistance determinants (ARD) in a gentoo penguin (Pygoscelis papua) and an Antarctic fur seal (Arctocephalus gazella) on Livingston Island. Glycopeptide resistance genes (vanA/vanD and vanB) were detected in both fecal samples, while the penguin's one was also mecA-positive and bla(NDM)-positive. Because of the remoteness and the isolation of the sampling locations, the carriage of vancomycin-resistant Enterococcus spp., methicillin-resistant Staphylococcus aureus, and NDM-producing Enterobacterales or other gram-negative bacilli suggested an ocean pollution with antibiotic resistant bacteria (ARB). Additionally, due to the type of ARD we detected, our results are alarming, and they cannot be explained only with agricultural and/or aquacultural pollution. Even though the current study is a preliminary one, it also demonstrates the potential of the field genetics analyses carried out with minimal equipment as a reliable monitoring tool for pollution with ARB. | 2022 | 35597002 |
| 2995 | 12 | 0.8758 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 1265 | 13 | 0.8758 | Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. | 2015 | 25475289 |
| 2404 | 14 | 0.8758 | Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS((B))] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards. | 2016 | 27920760 |
| 3652 | 15 | 0.8757 | Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms (Tenebrio molitor L.). In the present study, the distribution of antibiotic resistance genes in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.), their feeding substrates (carrots and wheatmeal), and frass was assessed. Microbial counts on selective media added with antibiotics highlighted the presence of lactic acid bacteria resistant to ampicillin and vancomycin and, more specifically, enterococci resistant to the latter antibiotic. Moreover, staphylococci resistant to gentamicin, erythromycin, tetracycline, and vancomycin were detected. Enterobacteriaceae resistant to ampicillin and gentamicin were also found, together with Pseudomonadaceae resistant to gentamicin. Some of the genes coding for resistance to macrolide-lincosamide-streptogramin B (MLS(B)) [erm(A), erm(C)], vancomycin [vanA, vanB], tetracycline [tet(O)], and β-lactams [mecA and blaZ] were absent in all of the samples. For the feeding substrates, organic wheatmeal was positive for tet(S) and tet(K), whereas no AR genes were detected in organic carrots. The genes tet(M), tet(K), and tet(S) were detected in both mealworms and frass, whereas gene aac-aph, coding for resistance to amynoglicosides was exclusively detected in frass. No residues for any of the 64 antibiotics belonging to 10 different drug classes were found in either the organic wheatmeal or carrots. Based on the overall results, the contribution of feed to the occurrence of antibiotic resistance (AR) genes and/or antibiotic-resistant microorganisms in mealworm larvae was hypothesized together with vertical transmission via insect egg smearing. | 2018 | 30510544 |
| 5396 | 16 | 0.8755 | Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products. | 2018 | 30485765 |
| 6050 | 17 | 0.8754 | Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Lactobacillus rhamnosus GG (ATCC 53103) is a probiotic strain used in fermented dairy products in many countries and is also used as a food supplement in the form of freeze-dried powder. The relationship of the vancomycin resistance factor in L. rhamnosus GG and the vancomycin resistance (van) genes of Enterococcus faecalis and E. faecium were studied using polymerase chain reaction (PCR), Southern hybridization and conjugation methods. Our results show that the vancomycin resistance determinant in L. rhamnosus GG is not closely related to enterococcal van genes, since no PCR product was amplified in L. rhamnosus GG with any of the three sets of vanA primers used, and enterococcal vanA, vanB, vnH, vanX, vanZ, vanY, vanS and vanR genes did not hybridize with DNA of L. rhamnosus GG. This strain does not contain plasmids and transfer of chromosomal vancomycin resistance determinant from L. rhamnosus GG to enterococcal species was not detected. Our results are in accordance with previous findings of intrinsically vancomycin-resistant lactic acid bacteria. | 1998 | 9706787 |
| 5387 | 18 | 0.8754 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 3638 | 19 | 0.8751 | Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable. | 2014 | 25525617 |