POWDER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
354700.9827Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla (TEM)), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants.202439165575
794810.9827Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland. This study investigated the fate of ciprofloxacin (CIP) in wetlands dominated by Vallisneria spiralis. About 99% of CIP was degraded from overlaying water within 4 days of treatment but significantly inhibited the nutrient removal capacity (TN, TP, and COD) by causing a drastic reduction in microbial aggregation in epiphytic biofilm and bacterial biodiversity. CIP triggered resistance mechanisms among dominant bacteria phyla such as Proteobacteria, Actinobacteria, and Planctomycetes causing their increased relative abundance. Additionally, the relative abundances of eukaryotic microorganisms (including; Chloroplastida, Metazoa, and Rhizaria) and 13 ARGs subtypes (including; Efflux pump, Tetracycline, Multi-drug, Rifampin, Beta-lactam, Peptide, Trimethoprim) were significantly increased. While dominant metabolic pathways such as Carbohydrate, amino acid, energy and nucleotide metabolism were inhibited. This study revealed that V. spiralis has great sorption capacity for CIP than sediment and though CIP was effectively removed from the overlying water, it caused a prolonged effect on the epiphytic biofilm microbial communities.202133412499
763320.9825Assessing the efficacy of bleaching powder in disinfecting marine water: Insights from the rapid recovery of microbiomes. Single-bleaching powder disinfection is a highly prevalent practice to disinfect source water for marine aquaculture to prevent diseases. However, due to the decay of active chlorine and the presence of disinfectant resistance bacteria (DRB), the effects of bleaching powder on prokaryotic community compositions (PCCs) and function in marine water remain unknown. In the present study, the source water in a canvas pond was treated with the normal dose of bleaching powder, and the impact on PCCs and functional profiles was investigated using 16S rRNA gene amplicon sequencing. The bleaching powder strongly altered the PCCs within 0.5 h, but they began to recover at 16 h, eventually achieving 76% similarity with the initial time at 72 h. This extremely rapid recovery was primarily driven by the decay of Bacillus and the regrowth of Pseudoalteromonas, both of which are DRB. Abundant community not only help PCCs recover but also provide larger functional redundancy than rare community. During the recovery of PCCs, stochastic processes drove the community assembly. After 72 h, five out of seven identified disinfectant resistance genes related to efflux pump systems were highly enriched, primarily in Staphylococcus and Bacillus. However, 15 out of the 16 identified antibiotic resistance genes (ARGs) remained unchanged compared to the initial time, indicating that bleaching powder does not contribute to ARGs removal. Overall, the findings demonstrate that single-bleaching powder disinfection cannot successfully meet the objective of disease prevention in marine aquaculture water due to the extremely rapid recovery of PCCs. Hence, secondary disinfection or novel disinfection strategies should be explored for source water disinfection.202337295228
604930.9822Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH(•) (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry.202337317238
607540.9821Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry.201931250457
774350.9821Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. For efficient treatment of tylosin mycelial dregs (TMDs), rapid tylosin removal mechanism and dynamics of ARGs during TMDs fermentation were investigated using integrated meta-omics (genomics, metaproteomics and metabolomics) and qPCR approaches. The results showed that over 86% of tylosin was degraded on day 7 regardless of the type of bulking agents. The rapid removal of tylosin was mainly attributed to de-mycarose reaction (GH3) and esterase hydrolysis (C7MYQ7) of Saccharomonospora, and catalase-peroxidase oxidation of Bacillus (A0A077JB13). In addition, the moisture content and mobile genetic elements were vital to control the rebound of ARGs. The removal efficiency of antibiotic resistant bacteria (Streptomyces, Pseudomonas, norank_f__Sphingobacteriaceae, and Paenalcaligenes) and Intl1 (98.8%) in fermentation treatment TC21 with corncob as the bulking agent was significantly higher than that in other three treatments (88.3%). Thus, appropriate bulking agents could constrain the abundance of antibiotic resistant bacteria and Intl1, which is crucial to effectively reduce the resistance.202235307520
607660.9820Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application.202235365862
774570.9820Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
349780.9820Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems.201829169020
806490.9820Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): Intestinal detoxification and stimulation of indigenous soil bacteria. Vermiremediation, which use earthworms to remove contaminants from soil, has been proven to be an alternative, low-cost technology. However, the effects of earthworm activity, especially the degraders in earthworm intestines, on the fate of sulfamethoxazole (SMX), and the effects of intestinal bacteria on degrading bacteria in soil are unclear. In this study, the effects of earthworms on the fate of SMX and related antibiotic resistance genes (ARGs) were investigated. Special attention was paid to the impact of earthworms on SMX degradation efficiency, degradation products, related ARGs, and degraders in both soil and earthworm intestines; the effect of intestinal bacteria on soil bacteria associated with SMX was also studied. Earthworms significantly accelerated SMX degradation by both intestinal detoxification and the stimulation of indigenous soil bacteria. Compared with the treatment without earthworms, the treatment with earthworms reduced SMX residues by 25.1 %, 49.2 %, 35.7 %, 34.2 %, and 35.7 % on the 10th, 20th, 30th, 60th, and 90th days, respectively. Compared with those in soil (treated with earthworms), the SMX residues in wormcasts were further reduced by 12.2-29.0 % from the 2nd to the 20th day, producing some unique anaerobic degradation products that were distinct from those in the soil. In earthworm intestines, SMX degradation was enhanced by bacteria of the genera Microvirga, Sphingomonas, Methylobacterium, Bacillus, and Tumebacillus. All of these bacteria (except Bacillus spp.) entered and colonised the soil with wormcasts, further promoting SMX degradation. Additionally, earthworms removed a significant number of ARGs by increasing the fraction of potential SMX degraders and inhibiting the potential hosts of ARGs and int1. This study demonstrated that earthworms could remediate SMX-contaminated soil by enhancing the removal of SMX and ARGs.202235985593
6053100.9820Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development.201425117002
7740110.9820Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas. The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China.202539168909
5390120.9819Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance.201222644346
8034130.9819Adding a complex microbial agent twice to the composting of laying-hen manure promoted doxycycline degradation with a low risk on spreading tetracycline resistance genes. Poultry manure is a reservoir for antibiotics and antibiotic resistance genes and composting is an effective biological treatment for manure. This study explored the effect of using two methods of adding a complex microbial agent to the composting of laying-hen manure on doxycycline degradation and tetracycline resistance genes elimination. The results showed that incorporating a complex microbial agent at 0.8% (w/w) on the 0(th) and 11th day (group MT2) effectively degraded doxycycline with a final degradation rate of 46.83 ± 0.55%. The half-life of doxycycline in this group was 21.90 ± 0.00 days and was significantly lower than that of group MT1 (1.6% (w/w) complex microbial agent added on the 0(th) day) and group DT (compost without complex microbial agent). But there was no significant difference in the final degradation rate of doxycycline between group DT and group MT1. The addictive with the complex microbial agent changed the microbial community structure. Bacteroidetes, Firmicutes and Proteobacteria were the dominant phyla during composting. Aerococcus, Desemzia, Facklamia, Lactobacillus, Streptococcus, and Trichococcus were the bacteria related to the degradation of doxycycline. Moreover, the incorporation of a complex microbial agent could decrease the risk on spreading tetracycline resistance genes. The single addition promoted the elimination of tetM, whose possible hosts were Enterococcus, Lactobacillus, Staphylococcus, and Trichococcus. Adding the complex microbial agent twice promoted the elimination of tetX, which was related to the low abundance of Chryseobacterium, Flavobacterium and Neptunomonas in group MT2. Redundancy analysis showed that the bacterial community, residual doxycycline and physiochemical properties have a potential effect on the variation in tetracycline resistance genes levels. Overall, adding the complex microbial agent twice is an effective measure to degrade doxycycline.202032806409
7919140.9819Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH(4)(+)-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater.202540233618
7640150.9818Gut microbiome and antibiotic resistance genes in plateau model animal (Ochotona curzoniae) exhibit a relative stability under cold stress. Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs.202439137548
8641160.9818Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation. Chinese strong-flavor baijiu (CSFB) brewing is a spontaneously solid-state fermentation process for approximately 60 days. Numerous microorganisms grow, die, and spark a series of metabolic reactions during fermentation. In this study, the microbial community and structure between total and viable bacteria in zaopei from the 5- and 20-year pits of CSFB are revealed by amplicon sequencing. Metagenome sequencing was applied to investigate acid resistance genes in Lactobacillus and predict carbohydrate active enzyme in zaopei. Besides, SourceTracker was conducted to expose bacterial sources. Results revealed that there was no significant difference in the bacterial community and structure between the total and viable bacteria; Lactobacillus was the most dominant bacterium in zaopei of two types of pits. Meanwhile, acid resistance genes argR, aspA, ilvE, gshA, DnaK, and cfa were genes that sustained Lactobacillus survival in the late stages of fermentation with high contents of acid and ethanol, and glycosyltransferases were identified as the predominated enzymes during the CSFB fermentation which catalyzed the process of lactic acid generation via Embden-Meyerhof-Parnas pathway and Hexose Monophosphate Pathway. Moreover, the environment contributed most bacteria to zaopei of the 5- and 20-year pits. These findings will provide a deeper understanding of the microbial community structure of viable and total bacteria and the reason for the dominance of Lactobacillus in the later stages of CSFB fermentation.202337087286
7881170.9818Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level.201930640017
7741180.9818Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin).201728229558
7996190.9818A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. Bacterial community structure of activated sludge directly affects the stable operation of WWTPS, and these bacterial communities may carry a variety of antibiotic resistance genes (ARGs), which is a threat to the public health. This study employed 16S rRNA gene sequencing and metagenomic sequencing to investigate the bacterial community composition and the ARGs in a sludge bulking oxidation ditch-denitrification filter WWTP in a cold region. The results showed that Trichococcus (20.34%), Blautia (7.72%), and Faecalibacterium (3.64%) were the main bacterial genera in the influent. The relative abundances of norank_f_Saprospiraceae and Candidatus_Microthrix reached 10.24% and 8.40%, respectively, in bulking sludge, and those of norank_f_Saprospiraceae and Candidatus_Microthrix decreased to 6.56 and 7.10% after the anaerobic tank, indicating that the anaerobic tank had an inhibitory effect on filamentous bacteria. After 20 mJ/cm(2) UV disinfection, about 540 bacterial genera, such as Romboutsia (7.99%), Rhodoferax (7.98%), and Thermomonas (4.13%), could still be detected in the effluent. The ARGs were 345.11 ppm in the influent and 11.20 ppm in the effluent; 17 subtypes, such as sul1, msrE, aadA5, ErmF, and tet(A), could be detected throughout the entire process. These ARG subtypes were persistent ARGs with a high health risk. Network analysis indicated that the changes in filamentous bacteria norank_f_Saprospiraceae abundance mainly contributed to the abundance shift of MexB, and Acinetobacter mainly increased the abundance of drfA1. These results above will provide theoretical support for the sludge bulking and ARGs controls of WWTPs in cold regions.202336495431