POTABLE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
121400.9889Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.201222731858
121610.9884Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.202438992444
121820.9878Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1.202031999747
526130.9878Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
144340.9878Wastewater Surveillance Detected Carbapenemase Enzymes in Clinically Relevant Gram-Negative Bacteria in Helsinki, Finland; 2011-2012. Antimicrobial resistance profiling of pathogens helps to identify the emergence of rare or new resistance threats and prioritize possible actions to be taken against them. The analysis of wastewater (WW) can reveal the circulation of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) among the catchment communities. Here, we analyzed WW influent samples to determine the prevalence of carbapenemase genes-carrying Gram-negative bacteria (Carba-GNB) in Helsinki, Finland. This study set important historical reference points from the very early stage of the carbapenemase era, during the period 2011-2012. A total of 405 bacterial isolates grown on CHROMagarKPC (n = 195) and CHROMagarESBL (n = 210) from WW influent samples were collected between October 2011 and August 2012 and were analyzed. The bacterial DNA from the isolates was extracted, and the prevalence of carbapenemases genes bla (KPC), bla (NDM), bla (GES), bla (OXA-48), bla (IMP), bla (IMI), and bla (VIM) were screened with multiplexed PCR. All carbapenemase-positive isolates were identified taxonomically to species or genus level with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The nucleic acid extraction was successful for 399 isolates, of which 59 (14.8%) were found to carry carbapenemase genes. A total of 89.8% of the carbapenemase positive isolates (53 out of 59) were obtained from CHROMagarKPC plates and only 10.2% (six out of 59) were obtained from CHROMagar ESBL plates. Among the Carba-GNB isolates, 86.4% were bla (GES) (51 out of 59), 10.2% were bla (KPC) (six out of 59), and 3.4% were bla (VIM) (two out of 59). The most common carba-gene, bla (GES), was carried by 10 different bacterial species, including Aeromonas spp., Enterobacter spp., and Kluyvera spp.; the bla (KPC) gene was carried by Escherichia coli, Klebsiella pneumoniae, and Kluyvera cryocescens; and the bla (VIM) gene was carried by Aeromonas hydrophila/caviae and Citrobacter amalonaticus. This study emphasizes that wastewater surveillance (WWS) can be an additional tool for monitoring antimicrobial resistance (AMR) at the population level.202235722284
524550.9877Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production.202133302298
121960.9877Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system.202338252715
144270.9876Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. BACKGROUND: Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. METHODS: We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). RESULTS: From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB (n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. CONCLUSIONS: We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.201829484175
526280.9876High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x106 and 1.2x108 for sul1, 1.1x107 and 1x108 for sul2, and 5.3x105 and 1.9x107 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10-3 to 10-1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRI-resistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1|dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.201830496274
102490.9875Phenotypic and genotypic characteristics of beta-lactamase dominant with CARBA, AmpC, and ESBL-producing bacteria in municipal wastewater influent in Helsinki, Finland. OBJECTIVES: Analysing samples of municipal wastewater influent (before treatment) can help to map the status of antibiotic-resistant bacteria (ARB) at the population level in sewershed communities and may also help in predicting the public health risks of ARB in surface water because of the outfall of wastewater. In this study, we investigated the bacterial isolates carrying beta-lactamase genes in wastewater and compared their genotypic and phenotypic characteristics. METHODS: A total of 399 bacterial isolates grown on CHROMagarESBL (n = 207) and CHROMagarKPC (n = 192) from composite wastewater influent samples (n = 7) from the Viikinmäki wastewater treatment plant (Helsinki) were subcultured, nucleic acid was extracted, and the prevalence of different beta-lactamase genes was screened with multiplex polymerase chain reaction (PCR). All PCR-positive isolates were identified with MALDI-TOF. RESULTS: A total of 32.6% of isolates (130 of 399) were PCR positive for at least one resistance gene, and 13% of these positive isolates out of 130 had at least three resistance genes. Among the 22 detected genes, bla(GES group) was the most prevalent, at 25.8% (n = 198; many isolates carried multiple genes), followed by bla(MOX) (13.1%) and bla(TEM) (10.1%) as most frequently detected. Furthermore, out of 18 different bacterial species/genera detected as carrying beta-lactamase genes, A. hydrophila/caviae (28.5%), Enterobacter spp. (16.9%), and E. coli (14.6%) were the most prevalent. Enterobacter spp., Aeromonas spp., and K. cryocescens potentially carried AmpC genes, and E. coli carried ESBL genes. CONCLUSION: We recorded a huge variety of beta-lactamases (bla(Amp)(C), bla(ESBL), and bla(CARBA)) genes in many potential pathogens that probably originated from both enteric and environmental sources.202337169125
2769100.9875Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Wastewater discharged from clinical isolation and general wards at two hospitals in Singapore was examined to determine the emerging trends of antibiotic resistance (AR). We quantified the concentrations of 12 antibiotic compounds by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibiotic-resistant bacteria (ARB), the class 1 integrase gene (intI1), and 16 antibiotic resistance genes (ARGs) that confer resistance to 10 different clinically relevant antibiotics. A subset of 119 antibiotic-resistant isolates were phylogenetically classified and tested for the presence of ARGs encoding resistance to β-lactam antibiotics (bla(NDM), bla(KPC), bla(SHV), bla(CTX-M)), amikacin [aac(6')-Ib], co-trimoxazole (sul1, sul2, dfrA), ciprofloxacin (qnrA, qnrB), and the intI1 gene. Among these resistant isolates, 80.7% were detected with intI1 and 66.4% were found to carry at least 1 of the tested ARGs. Among 3 sampled locations, the clinical isolation ward had the highest concentrations of ARB and the highest levels of ARGs linked to resistance to β-lactam (bla(KPC)), co-trimoxazole (sul1, sul2, dfrA), amikacin [aac(6')-Ib], ciprofloxacin (qnrA), and intI1 We found strong positive correlations (P < 0.05) between concentrations of bacteria resistant to meropenem, ceftazidime, amikacin, co-trimoxazole, and ciprofloxacin and abundances of bla(KPC), aac(6')-Ib, sul1, sul2, dfrA, qnrA, and intI1 genes.201627736769
2778110.9875The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Between August 2018 and June 2019, a river system in Germany that supplies a drinking water reservoir and is subject to the discharge from two sewage treatment plants was monitored for antibiotic residues via liquid chromatography-tandem mass spectrometry, antibiotic resistance genes (including bla(NDM), bla(VIM), bla(OXA-48), bla(KPC), bla(GIM), bla(SME), bla(IMI), bla(IMP), bla(SPM), bla(SIM), bla(OXA-23), bla(OXA-24), bla(OXA-51), bla(OXA-58), mcr) via qualitative real-time PCR and antibiotic-resistant bacteria [belonging to the ESKAPE-group (Enterococcus faecium, Staphyhlococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter ssp.; with resistance against Carbapenemases, Cephalosporines and Colistin) and Escherichia coli] based on cultivation methods followed by a characterization via MALDI-TOF MS and susceptibility testing applying microdilution. Residues of macrolide antibiotics such as clarithromycin (up to 0.60 μg/L) and residues of sulfamethoxazole (up to 0.40 μg/L) and trimethoprim (up to 0.39 μg/L) were detected downstream of the sewage treatment plants. In addition, no antibiotic residues were detected upstream the respective sewage treatment plants, except for anhydroerythromycin (n = 1, 202031978723
2768120.9874Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; (bla)AmpC 6 (100%), (bla)VIM-1, (bla)SHV and (bla)DHA 5 (100%) each, (bla)OXA-1 1 (100%), (bla)CMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for (bla)KPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in (bla)NDM-1, (bla)OXA-1, (bla)SHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance.202336754876
2272130.9874Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention.202134537275
2773140.9874Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500
5278150.9874Antibiotic resistance of culturable heterotrophic bacteria isolated from shrimp (Penaeus vannamei) aquaculture ponds. Shrimp aquaculture is one of the fastest growing food-producing avenues, where antibiotics usage has become an issue of great concern due to the development of antimicrobial resistance in bacteria. A total of 2304 bacterial isolates from 192 samples (sediment, water, shrimp, and source water) from Andhra Pradesh, India were screened. Antibiotic resistance of bacterial isolates was highest for oxytetracycline (23.4%) followed by erythromycin (12.7%), co-trimoxazole (10%) ciprofloxacin (9.6%), and chloramphenicol (6%), of which 11.9% isolates were multi-drug resistant. Bacterial isolates from shrimp (26.7%), water (23.9%), and sediment (19.6%) samples exhibited more resistance (p ≤ 0.05) towards oxytetracycline. Higher antibacterial resistance was observed from samples of southern Andhra Pradesh (locations L6 and L7). Gram negative bacteria were more prevalent (64%) and showed significantly (p ≤ 0.01) higher resistance. This study indicated the wider distribution of antibiotic-resistant bacteria in shrimp aquaculture ponds with potential risk to humans and the environment.202134450408
5269160.9874Prevalence of antibiotic resistance genes in bacteria from Gomti and Ganga rivers: implications for water quality and public health. Rivers serve as a significant habitat and water sources for diverse organisms, including humans. An important environmental and public health concern is the increase in antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquatic ecosystems brought about by excessive pollutant flow. The research highlighted that river water, which is receiving discharge from wastewater treatment plants, is harbouring multidrug-resistant bacteria. River water samples were collected in January, April, July and October 2022 from three separate locations of each Gomti and Ganga river. A total of 114 bacteria were isolated from Gomti as well as the Ganga River. All the isolates were tested for their resistance to various antibiotics by disc diffusion method. The isolated bacteria were tested for the antibiotic resistance genes using PCR and were identified by 16s rRNA sequencing. The ARBs percentages for each antibiotic were as follows: ampicillin (100%); cefotaxime (96.4, 63.1%); erythromycin (52.6, 57.8%); amikacin (68.4, 50.8%); tetracycline (47.3, 54.3%); nalidixic acid (47.3, 45.6%); streptomycin (68.4, 49.1%); gentamycin (43.8, 35%); chloramphenicol (26.3, 33.3%); neomycin (49.1, 29.8%) and ciprofloxacin (24.5, 7.01%). Further, antibiotic resistance genes in Gomti and Ganga water samples disclose distinctive patterns, including resistance to ermB (25, 40%); tetM (25, 33.3%); ampC (44.4, 40%) and cmlA1 (16.6%). Notably cmlA1 resistant genes were absent in all bacterial strains of the Gomti River. Additionally, gyrA gene was not found in both the river water samples. The presence of ARGs in the bacteria from river water shows threat of transferring these genes to native environmental bacteria. To protect the environment and public health, constant research is necessary to fully understand the extent and consequences of antibiotic resistance in these aquatic habitats.202439349711
1190170.9874Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
2614180.9873Distribution of Beta-Lactamase Producing Gram-Negative Bacterial Isolates in Isabela River of Santo Domingo, Dominican Republic. Bacteria carrying antibiotic resistance genes (ARGs) are naturally prevalent in lotic ecosystems such as rivers. Their ability to spread in anthropogenic waters could lead to the emergence of multidrug-resistant bacteria of clinical importance. For this study, three regions of the Isabela river, an important urban river in the city of Santo Domingo, were evaluated for the presence of ARGs. The Isabela river is surrounded by communities that do not have access to proper sewage systems; furthermore, water from this river is consumed daily for many activities, including recreation and sanitation. To assess the state of antibiotic resistance dissemination in the Isabela river, nine samples were collected from these three bluedistinct sites in June 2019 and isolates obtained from these sites were selected based on resistance to beta-lactams. Physico-chemical and microbiological parameters were in accordance with the Dominican legislation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses of ribosomal protein composition revealed a total of 8 different genera. Most common genera were as follows: Acinetobacter (44.6%) and Escherichia (18%). Twenty clinically important bacterial isolates were identified from urban regions of the river; these belonged to genera Escherichia (n = 9), Acinetobacter (n = 8), Enterobacter (n = 2), and Klebsiella (n = 1). Clinically important multi-resistant isolates were not obtained from rural areas. Fifteen isolates were selected for genome sequencing and analysis. Most isolates were resistant to at least three different families of antibiotics. Among beta-lactamase genes encountered, we found the presence of bla(TEM), bla(OXA), bla(SHV), and bla(KPC) through both deep sequencing and PCR amplification. Bacteria found from genus Klebsiella and Enterobacter demonstrated ample repertoire of antibiotic resistance genes, including resistance from a family of last resort antibiotics reserved for dire infections: carbapenems. Some of the alleles found were KPC-3, OXA-1, OXA-72, OXA-132, CTX-M-55, CTX-M-15, and TEM-1.202033519720
1237190.9873Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems.201830477153