POSES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
650600.9970Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks.202439944563
668610.9969The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.202540001375
669020.9967Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.202033487990
650730.9966What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
258640.9965A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach.202540426503
666550.9964A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271
666460.9963Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance.202540066274
671370.9963Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.202235947446
660180.9963Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Antimicrobial resistance (AMR) presents a global health challenge, necessitating comprehensive surveillance and intervention strategies. Wastewater-based epidemiology (WBE) is a promising tool that can be utilized for AMR monitoring by offering population-level insights into microbial dynamics and resistance gene dissemination in communities. This review (n = 29 papers) examines the current landscape of utilizing WBE for AMR surveillance with a focus on methodologies, findings, and gaps in understanding. Reported methods from the reviewed literature included culture-based, PCR-based, whole genome sequencing, mass spectrometry, bioinformatics/metagenomics, and antimicrobial susceptibility testing to identify and measure antibiotic-resistant bacteria and antimicrobial resistance genes (ARGs) in wastewater, as well as liquid chromatography-tandem mass spectrometry to measure antibiotic residues. Results indicate Escherichia coli, Enterococcus spp., and Pseudomonas spp. are the most prevalent antibiotic-resistant bacterial species with hospital effluent demonstrating higher abundances of clinically relevant resistance genes including bla, bcr, qnrS, mcr, sul1, erm, and tet genes compared to measurements from local treatment plants. The most reported antibiotics in influent wastewater across studies analyzed include azithromycin, ciprofloxacin, clindamycin, and clarithromycin. The influence of seasonal variation on the ARG profiles of communities differed amongst studies indicating additional factors hold significance when examining the conference of AMR within communities. Despite these findings, knowledge gaps remain, including longitudinal studies in multiple and diverse geographical regions and understanding co-resistance mechanisms in relation to the complexities of population contributors to AMR. This review underscores the urgent need for collaborative and interdisciplinary efforts to safeguard public health and preserve antimicrobial efficacy. Further investigation on the use of WBE to understand these unique population-level drivers of AMR is advised in a proposed framework to inform best practice approaches moving forward.202541011405
665690.9963Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.202439113256
6687100.9962Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotic resistance in aquaculture has emerged as a global crisis, representing a serious threat to the health of aquatic animals, environment, and human. The extensive use of antibiotics in aquaculture has led to rapid development of resistant bacterial strains, resulting in environmental contamination and the dissemination of resistant genes. Understanding of the research trends, key contributors, and thematic evolution of this field is essential for guiding future studies and policy interventions. The study aimed to conduct a bibliometric analysis of research on antibiotic resistance development in aquaculture, identifying key areas of research, leading contributors, emerging challenges, and alternative solutions. Data were extracted from the Web of Science (WoS) database covering the period from 2000 to 2025. A systematic search strategy was employed, utilizing terms including "antibiotic resistance" AND "bacteria," AND "aquaculture". Relevant publications were extracted from the WoS using these keywords. R-tool was then used to analyze the obtained metadata including keywords, citation patterns, and co-authored country. The analysis revealed a remarkable increase in publications over the past 25 years, with key contributions from China, India, and the USA. The most significant articles focused on the presence of multidrug resistant bacteria in the aquatic environments and, antibiotic-resistant genes, and horizontal gene transfer. Probiotics are the alternative solution to overcome the antibiotic resistance and enhance aquaculture sustainability. Future research should focus on the interdisciplinary collaboration, novel antimicrobial alternatives, and global monitoring approaches.202540558188
6537110.9962Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity.202540284775
6602120.9962Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Antibiotic resistance is a well-documented global health challenge that disproportionately impacts low- and middle-income countries. In 2019, the number of deaths attributed to and associated with antibiotic resistance in Western Sub-Saharan Africa was approximately 27 and 115 per 100,000, respectively, higher than in other regions worldwide. Extensive research has consistently confirmed the persistent presence and spread of antibiotic resistance in hospitals, among livestock, within food supply chains, and across various environmental contexts. This review documents the environmental risk factors contributing to the spread of antibiotic resistance in West Africa. We collected studies from multiple West African countries using the Web of Science and PubMed databases. We screened them for factors associated with antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Our findings indicate that antibiotic resistance remains a significant concern in West Africa, with environmental pollution and waste management identified as major factors in the proliferation of antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Additional contributing factors include poor hygiene, the use of antibiotics in agriculture, aquaculture, and animal farming, and the transmission of antibiotic resistance within hospital settings. Unfortunately, the lack of comprehensive genetic characterization of antibiotic-resistant bacteria and resistance genes hinders a thorough understanding of this critical issue in the region. Since antibiotic resistance transcends national borders and can spread within and between countries, it is essential to understand the environmental risk factors driving its dissemination in West African countries. Such understanding will be instrumental in developing and recommending effective strategies nationally and internationally to combat antibiotic resistance.202540284787
3268130.9962Resistomic features and novel genetic element identified in hospital wastewater with short- and long-read metagenomics. The global spread of antimicrobial resistance (AMR) poses a serious threat to public health, with hospital wastewater treatment plants (WWTPs) recognized as a key hotspot for resistant pathogens and antibiotic resistance genes (ARGs). This study employed advanced hybrid sequencing platforms to provide a comprehensive resistomic analysis of a Qingdao WWTP in China, revealing previously uncovered AMR transmission risks. We identified 175 ARG subtypes conferring resistance to 38 antimicrobials, including the last-resort antibiotics, highlighting the extensive and concerning resistance reservoir within this environment. Multidrug resistance genes predominated, followed by ARGs targeting aminoglycoside, β-lactam, tetracycline, glycopeptide, and macrolide classes, reflecting clinically relevant resistance patterns. Co-occurrence analysis revealed ARGs were strongly associated with mobile genetic elements, especially for ARGs targeting sulfonamide, glycopeptide, macrolide, tetracycline, aminoglycoside, and β-lactam classes, providing concrete evidence of their high dissemination potential. A striking 85 % of 131 metagenome-assembled genomes (MAGs) carried ARGs, demonstrating prevalent resistance in the wastewater microbiome. Furthermore, the identification of several rarely studied genomic islands (GIs), including those conferring resistance to antibiotics and heavy metals, and notably, the novel variant GIAS409 carrying transposases and heavy metal resistance operons, reveals a significant and previously neglected mechanism for co-selection and dissemination. This study significantly advances our understanding of AMR dynamics in hospital WWTPs, demonstrating that current treatment approaches (42 % ARG removal) have limited efficacy and that WWTP may serve as potential hotspots for multidrug resistance development. Collectively, these findings emphasize the urgent need for improved wastewater management to safeguard public health.202540915207
6593140.9962Metagenomic analysis of human, animal, and environmental samples identifies potential emerging pathogens, profiles antibiotic resistance genes, and reveals horizontal gene transfer dynamics. Antimicrobial resistance (AMR) poses a significant threat to global health. The indiscriminate use of antibiotics has accelerated the emergence and spread of drug-resistant bacteria, compromising our ability to treat infectious diseases. A One Health approach is essential to address this urgent issue, recognizing the interconnectedness of human, animal, and environmental health. This study investigated the prevalence and transmission of AMR in a temporary settlement in Kathmandu, Nepal. By employing shotgun metagenomics, we analyzed a diverse range of samples, including human fecal samples, avian fecal samples, and environmental samples. Our analysis revealed a complex interplay of pathogenic bacteria, virulence factors (VF), and antimicrobial resistance genes (ARGs) across these different domains. We identified a diverse range of bacterial species, including potential pathogens, in both human and animal samples. Notably, Prevotella spp. was the dominant gut bacterium in human samples. Additionally, we detected a wide range of phages and viruses, including Stx-2 converting phages, which can contribute to the virulence of Shiga toxin-producing E. coli (STEC) strains. Our analysis revealed the presence of 72 virulence factor genes and 53 ARG subtypes across the studied samples. Poultry samples exhibited the highest number of ARG subtypes, suggesting that the intensive use of antibiotics in poultry production may contribute to the dissemination of AMR. Furthermore, we observed frequent horizontal gene transfer (HGT) events, with gut microbiomes serving as key reservoirs for ARGs. This study underscores the critical role of a One Health approach in addressing AMR. By integrating human, animal, and environmental health perspectives, we can better understand the complex dynamics of AMR and develop effective strategies for prevention and control. Our findings highlight the urgent need for robust surveillance systems, judicious antibiotic use, and improved hygiene practices to mitigate the impact of AMR on public health.202540204742
6693150.9962Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.202438906487
6716160.9962Wastewater surveillance of antibiotic-resistant bacteria for public health action: potential and challenges. Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions, identifying high-risk populations for targeted monitoring, providing early warning of the emergence and spread of antibiotic-resistant bacteria (ARBs), and identifying novel antibiotic-resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary, we explore whether monitoring wastewater for antibiotic-resistant genes (ARGs) and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in ARBs and ARGs and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.202539475072
6576170.9962Wastewater-based AMR surveillance associated with tourism on a Caribbean island (Guadeloupe). OBJECTIVES: Antimicrobial resistance (AMR) is a major public health concern worldwide. International travel is a risk factor for acquiring antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). Therefore, understanding the transmission of ARB and ARGs is instrumental in tackling AMR. This longitudinal study aimed to assess the benefit of wastewater monitoring in Guadeloupe to evaluate the role of tourism in the spread of AMR. METHODS: A wastewater-based surveillance (WBS) study was conducted to monitor AMR in Guadeloupe in 2022 during dry and wet seasons. We characterized the resistome, microbiome and exposome of water samples collected in wastewater treatment facilities of two cities with different levels of tourism activities, in the content of aircraft toilets, and the pumping station receiving effluents from hotels. RESULTS: The results show that the WBS approach facilitates the differentiation of various untreated effluents concerning exposome, microbiome, and resistome, offering insights into AMR dissemination. Additionally, the findings reveal that microbiome and exposome are comparable across sites and seasons, while resistome characterisation at specific locations may be pertinent for health surveillance. The microbiome of aircraft was predominantly composed of anaerobic bacteria from human intestinal microbiota, whereas the other locations exhibited a blend of human and environmental bacteria. Notably, individuals arriving by air have not introduced clinically significant resistance genes. Exposome compounds have been shown to influence the resistome's variance. CONCLUSIONS: Clear differences were seen between the aircraft and the local sampling sites, indicating that the contribution of tourism to the observed resistance in Guadeloupe is not significant.202540154781
2590180.9962Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship.202134579656
3292190.9962Heterotrophic bacteria in drinking water: evaluating antibiotic resistance and the presence of virulence genes. Heterotrophic bacteria, impacting those with infections or compromised immunity, pose heightened health risks when resistant to antibiotics. This study investigates heterotrophic plate count bacteria in water from North West-C (NWC) and North West-G (NWG) facilities, revealing prevalent β-hemolysis (NWC 82.5%, NWG 86.7%), enzyme production (98%), and antibiotic resistance, especially in NWC. NWG exhibits variations in hemolysin (P = 0.013), lipase (P = 0.009), and DNase activity (P = 0.006). Antibiotics, including ciprofloxacin, persist throughout treatment, with high resistance to β-lactams and trimethoprim (47%-100%), predominantly in NWC. Multiple antibiotic resistance index indicates that 90% of values exceed 0.20, signifying isolates from high antibiotic usage sources. Whole genome sequencing reveals diverse antibiotic resistance genes in heterotrophic strains, emphasizing their prevalence and health risks in water.IMPORTANCEThis study's findings are a stark reminder of a significant health concern: our water sources harbor antibiotic-resistant heterotrophic bacteria, which can potentially cause illness, especially in individuals with weakened immune systems or underlying infections. Antibiotic resistance among these bacteria is deeply concerning, as it threatens the effectiveness of antibiotics, critical for treating various infections. Moreover, detecting virulence factors in a notable proportion of these bacteria highlights their elevated risk to public health. This research underscores the immediate need for enhanced water treatment processes, rigorous water quality monitoring, and the development of strategies to combat antibiotic resistance in the environment. Safeguarding the safety of our drinking water is imperative to protect public health and mitigate the spread of antibiotic-resistant infections, making these findings a compelling call to action for policymakers and public health authorities alike.202438205959