POLYCULTURE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
776100.9551Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: Effect of mixed vegetation and substrate type. This study aimed to investigate the influence of cropping method and substrate type on the fate and the removal of bacterial and antibiotic resistance genes (ARGs) indicators from primary wastewater by constructed wetlands (CWs) during startup and maturation stages. Four small-scale CWs differing in their plantation pattern (monoculture vs. polyculture) and substrate type were constructed and operated under field conditions. While for bacteria, the greatest impact of the cropping method and substrate type on removal was during the startup stage rather than the maturation stage, for ARGs, such impact was significant at both stages. During startup, the removal efficiencies of heterotrophic bacteria, fecal coliforms, E. coli, 16S rRNA genes and lacZ increased with the operation time. At maturation, the removal efficiencies were constant and were within the range of 89.2-99.4%, 93.7-98.9%, 89-98.8%, 94.1-99.6% and 92.9-98.7%, respectively. The removal efficiencies of intl1, tetM, intl1, sul1, ermB and total ARGs were also increased with the operation time. However, they were ARG type and configuration-dependent; at maturation they ranged between 50.7%-89.4%, 85.9%-97%, 49.6%-92.9%, 58.2%-96.7% and 79.9-94.3%, respectively. The tuff-filled serially planted CW was also the only one capable of removing these genes at similar high efficiency. Metagenomic analysis showed that none of the ARGs was among the most common ARGs in water and biofilm samples; rather most ARGs belonged to bacterial efflux transporter superfamilies. Although ARGs were removed, they were still detected in substrate biofilm and their relative concentrations were increased in the effluents. While the removal of both bacteria and ARGs was higher during summer compared to winter, the season had no effect on the removal pattern of ARGs. Hence, combination of the serial plantation with substrate having high surface area is a potential strategy that can be used to improve the performance of CWs.202133338689
354210.9546Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of Bla(TEM) and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of Bla(TEM) and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.202133445049
673320.9545Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well.201830253298
871530.9544Three Novel Bacteria Associated with Two Centric Diatom Species from the Mediterranean Sea, Thalassiosira rotula and Skeletonema marinoi. Diatoms are a successful group of microalgae at the base of the marine food web. For hundreds of millions of years, they have shared common habitats with bacteria, which favored the onset of interactions at different levels, potentially driving the synthesis of biologically active molecules. To unveil their presence, we sequenced the genomes of bacteria associated with the centric diatom Thalassiosira rotula from the Gulf of Naples. Annotation of the metagenome and its analysis allowed the reconstruction of three bacterial genomes that belong to currently undescribed species. Their investigation showed the existence of novel gene clusters coding for new polyketide molecules, antibiotics, antibiotic-resistance genes and an ectoine production pathway. Real-time PCR was used to investigate the association of these bacteria with three different diatom clones and revealed their preference for T. rotula FE80 and Skeletonema marinoi FE7, but not S. marinoi FE60 from the North Adriatic Sea. Additionally, we demonstrate that although all three bacteria could be detected in the culture supernatant (free-living), their number is up to 45 times higher in the cell associated fraction, suggesting a close association between these bacteria and their host. We demonstrate that axenic cultures of T. rotula are unable to grow in medium with low salinity (<28 ppt NaCl) whereas xenic cultures can tolerate up to 40 ppt NaCl with concomitant ectoine production, likely by the associated bacteria.202134947994
764640.9543Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.202540244481
673250.9540Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria.202032786566
353960.9539Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. The USA is the third-leading cotton-producing country worldwide and cotton farming is common in the state of Georgia. Cotton harvest can be a significant contributor to airborne microbial exposures to farmers and nearby rural communities. The use of respirators or masks is one of the viable options for reducing organic dust and bioaerosol exposures among farmers. Unfortunately, the OSHA Respiratory Protection Standard (29 CFR Part 1910.134) does not apply to agricultural workplaces and the filtration efficiency of N95 respirators was never field-tested against airborne microorganisms and antibiotic resistance genes (ARGs) during cotton harvesting. This study addressed these two information gaps. Airborne culturable microorganisms were sampled using an SAS Super 100 Air Sampler in three cotton farms during cotton harvesting, and colonies were counted and converted to airborne concentrations. Genomic DNA was extracted from air samples using a PowerSoil(®) DNA Isolation Kit. A series of comparative critical threshold (2(-ΔΔCT)) real-time PCR was used to quantify targeted bacterial (16S rRNA) genes and major ARGs. Two N95 facepiece respirator models (cup-shaped and pleated) were evaluated for their protection against culturable bacteria and fungi, total microbial load in terms of surface ATP levels, and ARGs using a field experimental setup. Overall, culturable microbial exposure levels ranged between 10(3) and 10(4) CFU/m(3) during cotton harvesting, which was lower when compared with bioaerosol loads reported earlier during other types of grain harvesting. The findings suggested that cotton harvesting works can release antibiotic resistance genes in farm air and the highest abundance was observed for phenicol. Field experimental data suggested that tested N95 respirators did not provide desirable >95% protections against culturable microorganisms, the total microbial load, and ARGs during cotton harvesting.202337375063
789670.9538Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Microbial fuel cell constructed wetlands (CW-MFCs) with different circuit operation conditions and hydraulic retention time (HRT) were constructed to evaluate their ability to remove and accumulate pharmaceutical and personal care products (PPCPs) (sulfadiazine (SDZ), carbamazepine (CBZ), naproxen (NPX) and ibuprofen (IBP)) during four months running process. The abundance level of corresponding sulfonamide antibiotic resistance genes (ARGs) was also investigated. The results showed that closed circuit operation of CW-MFC contributed to the decrease in mass loading of COD, NH(4)(+)-N, PPCPs, and wastewater toxicity in the effluent. Additionally, closed circuit operation with low HRT contributed to enhancing selected PPCP mass accumulation on electrodes by electro-adsorption, and thus the higher sulfonamide ARG abundance was detected in the electrodes and effluent. Moreover, the composition of bacteria was greatly influenced by the mass accumulation of PPCPs revealed by redundancy analysis results. Procrustes analysis results further demonstrated that bacterial community contributed greatly to the ARGs profiles. Therefore, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates, and thus ARGs were effectively accumulated on electrodes. Function analysis of the bacterial community from PICRUSt predicted metagenomes revealed that closed circuit mode enhanced the abundances of the function genes of metabolic and the multiple ARGs, suggesting that closed circuit operation exhibited positive effects on metabolic process and ARG accumulation in CW-MFC system.202031995737
810580.9537Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.202539798649
812790.9536Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem.202235876241
7130100.9536Microbial community structure and resistome dynamics on elevator buttons in response to surface disinfection practices. BACKGROUND: Disinfectants have been extensively used in public environments since the COVID-19 outbreak to help control the spread of the virus. This study aims to investigate whether disinfectant use influences the structure of bacterial communities and contributes to bacterial resistance to disinfectants and antibiotics. METHODS: Using molecular biology techniques-including metagenomic sequencing and quantitative PCR (qPCR)-we analyzed the bacterial communities on elevator button surfaces from two tertiary hospitals, one infectious disease hospital, two quarantine hotels (designated for COVID-19 control), and five general hotels in Nanjing, Jiangsu Province, during the COVID-19 pandemic. We focused on detecting disinfectant resistance genes (DRGs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). RESULTS: Significant differences were observed in the bacterial community structures on elevator button surfaces across the four types of environments. Quarantine hotels, which implemented the most frequent disinfection protocols, exhibited distinct bacterial profiles at the phylum, genus, and species levels. Both α-diversity (within-sample diversity) and β-diversity (between-sample diversity) were lower and more distinct in quarantine hotels compared to the other environments. The abundance of DRGs, ARGs, and MGEs was also significantly higher on elevator button surfaces in quarantine hotels. Notably, antibiotic-resistant bacteria (ARBs), including Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, were detected in all four settings. CONCLUSION: The structure of bacterial communities on elevator button surfaces varies across different environments, likely influenced by the frequency of disinfectant use. Increased resistance gene abundance in quarantine hotels suggests that disinfection practices may contribute to the selection and spread of resistant bacteria. Enhanced monitoring of disinfection effectiveness and refinement of protocols in high-risk environments such as hospitals and hotels are essential to limit the spread of resistant pathogens.202540520307
7994110.9536Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process. The antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in Wastewater treatment plants (WWTPs) have attracted increasing attention. In this study, the abundance of ARB and resistance genes tet32 and defA1 were investigated using high-throughput sequencing and high-throughput qPCR in water samples collected from the inlet of the biological treatment pool and outlet of Beilun Yandong WWTP in Ningbo, China. The result shows there was a high level of ARGs in the water of both the inlets and outlets in 2017 and 2018, whereas no ARGs were detected after adding a new baffled bioreactor (BBR) water treatment process in 2019. The BBR process uses Bacillus subtilis, B. thuringiensis, B. megaterium, B. licheniformis and B. amyloliquefaciens to effectively eliminate the ARGs in wastewater. Notably, this process did not significantly change the bacterial community structure of outlet water samples. The findings demonstrate an effective new method for removing ARGs from sewage.202234532751
8113120.9535Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
7987130.9534Assessing the effect of composted cyclosporin A fermentation residue as organic fertilizer: Focus on soil fertility and antibiotic resistance. Cyclosporin A fermentation residue (CFR) is a type of organic waste generated during the production of cyclosporin A, which are abundant in nutrients including organic matter, phosphorus, nitrogen and potassium. Inappropriate handling of CFR not only waste valuable bioresources, but may also lead to the cyclosporin A and associated resistance genes into the natural environment, posing a significant threat to ecological system and human health. Land application was an effective way to resource recovery of CFR after aerobic composting (CAC). This study investigated the impact of CAC on soil fertility and environmental safety. The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities. CAC altered the diversity and community composition of soil bacteria, resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation. The introduced cyclosporin A (71.69 µg/kg) completely degraded within 20 days due to soil biodegradation. The significantly increased abundance of intIl, mdr3, pgp, TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days, indicating a reduced risk of antimicrobial resistance. The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk, which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting.202540602925
7649140.9534Pathogenic bacteria in biogas plants using cattle, swine, and poultry manure. Fugate, a waste product from biogas production, regularly used in agriculture as a fertiliser, may contain bacterial pathogens that cause zoonoses. Anaerobic digestion (AD) can inactivate viable pathogens, including parasites, viruses, and pathogens containing antibiotic resistance genes. This study aimed to compare the numbers of pathogenic bacteria and diversity of potential bacterial pathogens in the fugate using three different types of slurry: cattle, swine, and poultry manure. The swine fugate showed higher numbers of Clostridium perfringens and Campylobacter sp. than the poultry and cattle fugate. In the cattle fugate, the lowest total number of pathogenic bacteria and a low number of coliforms were detected after the AD. The use of cattle manure in biogas plants presents a lower potential for soil contamination with pathogens. The fugate produced using poultry or swine manure can be used carefully to avoid possibility of contamination of aquifers or surface waters. Also fugate produced from manure of cows suffering from chronic botulism can be used only with carefulness because of the presence of Clostridium botulinum spores in biogas waste of diseased cows.202540735305
7073150.9534Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.201931589689
7900160.9533Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics.202539986428
8718170.9533The construction of an engineered bacterium to remove cadmium from wastewater. The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.201425521138
8000180.9533Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process. The fate of antibiotic resistance genes (ARGs) in reclaimed water reuse system with integrated membrane process (IMR) was firstly investigated. Results indicated that ARGs, class 1 integrons (intI1) and 16S rRNA gene could be reduced efficiently in the IMR system. The absolute abundance of all detected ARGs in the reuse water after reverse osmosis (RO) filtration of the IMR system was 4.03 × 10(4) copies/mL, which was about 2-3 orders of magnitude lower than that in the raw influent of the wastewater treatment plants (WWTPs). Maximum removal efficiency of the detected genes was up to 3.8 log removal values. Daily flux of the summation of all selected ARGs in the IMR system decreased sharply to (1.02 ± 1.37) ×10(14) copies/day, which was 1-3 orders of magnitude lower than that in the activated sludge system (CAS) system. The strong clustering based on ordination analysis separated the reuse water from other water samples in the WWTPs. Network analysis revealed the existence of potential multi-antibiotic resistant bacteria. The potential multi-antibiotic resistant bacteria, including Clostridium and Defluviicoccus, could be removed effectively by microfiltration and RO filtration. These findings suggested that the IMR system was efficient to remove ARGs and potential multi-antibiotic resistant bacteria in the wastewater reclamation system.202031446351
7647190.9532Deeper Exploration of Gut Microbiome: Profile of Resistome, Virome and Viral Auxiliary Metabolic Genes of Three Ethnic Indian Groups. The current study explored the resistomes and viromes of three Indian ethnic populations: Jaisalmer, Khargone, and Ladakh. These three groups had different dietary habits and antibiotic consumption rates. A resistome analysis indicated that compared to the Jaisalmer (n = 10) group, the burden of antibiotic resistance genes in the gut microbiome was higher in the Khargone (n = 12) and Ladakh (n = 9) groups. However, correlational analysis factoring in food habits, healthcare, and economic status was not statistically significant due to the limited number of samples. A considerable number of antibiotic resistance genes (ARGs) were present in well-known gut commensals such as Bifidobacteriaceae, Acidomonococcaceae, etc., as retrieved directly by mapping to the Resfinder database using the Groot tool. Further, the raw reads were assembled using MEGAHIT, and putative bacteriophages were retrieved using the VIBRANT tool. Many of the classified bacteriophages of the virome revealed that bacteria belonging to the families Bifidobacteriaceae and Enterocococcaceae were their hosts. The prophages identified in these groups primarily contained auxiliary metabolic genes (AMGs) for primary amino acid metabolism. However, there were significantly fewer AMGs in the Ladakh group than in the Jaisalmer group (p < 0.05). None of the classified bacteriophages or prophages contained ARGs. This indicates that phages do not normally carry antibiotic resistance genes.202539158623