PLACES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
271400.9933Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella terrigena carrying a bla(SHV-2) and 1 Citrobacter freundii isolate with a qnrB9 gene. Among Enterococcus (n=108; 35 samples; Enterococcus casseliflavus--40, Enterococcus faecalis--20, Enterococcus faecium--18, Enterococcus hirae--9, Enterococcus gallinarum--5, and Enterococcus spp.--16) resistance was detected for tetracyclines [6%; tet(M) and/or tet(L)], erythromycin [3%; erm(B)], nitrofurantoin (1%) or ciprofloxacin (1%). The present study places ready-to-eat salads within the spectrum of ecological niches that may be vehicles for antibiotic resistance bacteria/genes with clinical interest (e.g. E. coli-D-ST69; bla(SHV-2)) and these findings are worthy of attention as their spread to humans by ingestion cannot be dismissed.201324036261
281710.9933Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed.201121145609
289120.9932Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Mediterranean herring gulls (Larus cachinnans) were investigated as a possible reservoir of antibiotic resistant bacteria and of cassette-borne resistance genes located in class 1 integrons. Two hundred and fourteen isolates of the family Enterobacteriaceae were collected from cloacal swabs of 92 chicks captured in a natural reserve in the North East of Italy. They showed high percentages of resistance to ampicillin and streptomycin. High percentages of resistance to trimethoprim/sulfamethoxazole were found in Proteus and Citrobacter and to chloramphenicol in Proteus. Twenty-two (10%) isolates carried the intI1 gene. Molecular characterization of the integron variable regions showed a great diversity, with the presence of 11 different cassette arrays and of one integron without integrated cassettes. The dfrA1-aadA1a and aadB-aadA2 cassette arrays were the most frequently detected. Also the estX cassette, alone or in combination with other cassettes, was detected in many isolates. From this study it is concluded that the enteric flora of Mediterranean herring gulls may act as a reservoir of resistant bacteria and of resistance genes. Due to their feeding habits and their ability to fly over long distances, these free-living birds may facilitate the circulation of resistant strains between waste-handling facilities, crops, waters, and urban areas.200818476779
284830.9932Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood.202338144894
274040.9931Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria. The impact of European aquaculture, namely trout farms, in the spread of antibiotic resistance and/or zoonotic pathogens has been scarcely addressed. Moreover, aquaculture contamination sources and bacterial dissemination routes have been barely explored. In this study, we assessed the contribution of Portuguese land-based intensive rainbow trout farms and retailed market trout to the spread of Salmonella and bacteria carrying clinically-relevant antibiotic resistance genes (ARGs) as well as inflow water and feed as possible sources of those contaminants. Cultural and molecular methods were used to analyse 53 fish farm samples (upstream/downstream water and sediments, tanks and trout) and 25 marketed trout. Plasmid-mediated quinolone resistance (PMQR) genes were found in 21% (n = 11/53) of samples (water/sediment/feed/trout), from all collection points (upstream/within/downstream tanks) and seasons, as well as in 12% (n = 3/25) of marketed trout (3 supermarkets). PMQR genes (qnrS1-S2-S3, qnrB7-B19, qnrD1, oqxAB) were detected in Enterobacteriaceae or Aeromonas hydrophila. An E. coli strain producing extended-spectrum-beta-lactamase SHV-12 was detected in all sampled points of a fish farm. Salmonella (4 serotypes, including S. Newport-ST118) was detected in 26% (n = 14/53) of the samples from both farms (water/sediment upstream/within tanks). The clinically-relevant plasmid-mediated colistin resistance mcr genes were not detected. However, colistin resistant S. Abony with new mutations in the chromosomal pmrA and pmrB genes was observed. Identical Salmonella and SHV-12-producing E. coli strains (by PFGE/MLST) in water upstream and within trout tanks points to inflow-water of trout farms as an important source of pathogenic bacteria and ARG contamination. These results highlight the need to define microbiological standards for water supplying fish farms in the EU and to establish surveillance and control strategies to limit bacterial transmission associated with this fastest growing food sector worldwide.201830045498
552450.9931Multidrug-resistant Opportunistic and Pathogenic Bacteria Contaminate Algerian Banknotes Currency. Currency is one of the most exchanged items in human communities as it is used daily in exchange for goods and services. It is handled by persons with different hygiene standards and can transit in different environments. Hence, money can constitute a reservoir for different types of human pathogens. This study aimed to evaluate the potential of Algerian banknotes to shelter opportunistic pathogenic and multiresistant bacteria. To that end, 200 circulating notes of four different denominations were collected from various places and analyzed for their bacterial loads and contents. Besides, predominant strains were identified and characterized by biochemical and molecular methods, and their resistance profiles against 34 antibiotics were determined. Our results indicated that 100% of the studied banknotes were contaminated with bacteria. The total bacterial concentrations were relatively high, and different bacterial groups were grown, showing important diversity. In total, 48 predominant strains were identified as belonging to 17 genera. Staphylococcus and Micrococcus were the most prevalent genera, followed by Bacillus, Pseudomonas, and Acinetobacter. Antibiotic susceptibility testing showed that all the isolates harbored resistance to at least two molecules, and worrying resistance levels were observed. These findings prove that Algerian currency harbors opportunistic multiresistant bacteria and could potentially act as a vehicle for the spread of bacterial diseases and as a reservoir for antibiotic resistance genes among the community. Therefore, no cash payment systems should be developed and generalized to minimize cash handling and subsequent potential health risks.202033574877
289260.9931Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments. This study assessed the distribution of class 1 integrons in commensal bacteria isolated from agricultural and nonfarm environments, and the transferability of class 1 integrons to pathogenic bacteria. A total of 26 class 1 integron-positive isolates were detected in fecal samples from cattle operations and a city park, water samples from a beef ranch and city lakes, and soil, feed (unused), manure, and compost samples from a dairy farm. Antimicrobial susceptibility testing of class 1 integron-positive Enterobacteriaceae isolates from city locations displayed multi-resistance to 12-13 out of the 22 antibiotics tested, whereas class 1 integron-positive Enterobacteriaceae isolates from cattle operations only displayed tetracycline resistance. Most class 1 integrons had one gene cassette belonging to the aadA family that confers resistance to streptomycin and spectinomycin. One isolate from a dog fecal sample collected from a city dog park transferred its class 1 integron to a strain of Escherichia coli O157:H7 at a frequency of 10(-7) transconjugants/donor by in vitro filter mating experiments under the stated laboratory conditions. Due to the numerous factors that may affect the transferability testing, further investigation using different methodologies may be helpful to reveal the transferability of the integrons from other isolates. The presence of class 1 integrons among diverse commensal bacteria from agricultural and nonfarm environments strengthens the possible role of environmental commensals in serving as reservoirs of antibiotic resistance genes.201020704511
363870.9931Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable.201425525617
262980.9931Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada. The spread of antimicrobial resistance from human activity derived sources to natural habitats implicates wildlife as potential vectors of antimicrobial resistance transfer. Wild birds, including corvid species can disseminate mobile genetic resistance determinants through faeces. This study aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli and Klebsiella spp. isolates obtained from winter roosting sites of American crows (Corvus brachyrhynchos) and common ravens (Corvus corax) in Canada. Faecal swabs were collected at five roosting sites across Canada. Selective media isolation and multiplex PCR screening was utilized to identify PMQR genes followed by gene sequencing, pulse-field gel electrophoresis and multilocus sequence typing to characterize isolates. Despite the low prevalence of E. coli containing PMQR (1·3%, 6/449), qnrS1, qnrB19, qnrC, oqxAB and aac(6')-Ib-cr genes were found in five sequence types (ST), including E. coli ST 131. Conversely, one isolate of Klebsiella pneumoniae contained the plasmid-mediated resistance gene qnrB19. Five different K. pneumoniae STs were identified, including two novel types. The occurrence of PMQR genes and STs of public health significance in E. coli and Klebsiella pneumoniae recovered from corvids gives further evidence of the anthropogenic derived dissemination of antimicrobial resistance determinants at the human activity-wildlife-environment interface. SIGNIFICANCE AND IMPACT OF THE STUDY: This study examined large corvids as possible vector species for the dissemination of antimicrobial resistance in indicator and pathogenic bacteria as a means to assess the anthropogenic dissemination of plasmid-mediated quinolone resistance (PMQR) genes. Although rare, PMQR genes were found among corvid populations across Canada. The clinically important Escherichia coli strain ST131 containing aac(6')-Ib-cr gene along with a four-class phenotypic antimicrobial resistance (AMR) pattern as well as one Klebsiella pneumoniae strain containing a qnrB19 gene were identified in one geographical location. Corvids are a viable vector for the circulation of PMQR genes and clinically important clones in wide-ranging environments.201829675942
180690.9931Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes. The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.201425191308
1656100.9931Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.201627977751
2617110.9931Mossambicus tilapia (Oreochromis mossambicus) collected from water bodies impacted by urban waste carries extended-spectrum beta-lactamases and integron-bearing gut bacteria. Oreochromis mossambicus (Peters 1852) (Tilapia) is one of the most consumed fish globally. Tilapia thrives well in environments polluted by urban waste, which invariably contain antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Thus, Tilapia surviving in such polluted environments may serve as a potential source for dissemination of ARGs. To investigate this, we isolated bacterial strains from gut of Tilapia found in polluted rivers and lakes near Pune, India, and studied the prevalence of resistance genes by molecular methods. A total of 91 bacterial strains were obtained, which include fish pathogens and human pathogens such as Aeromonas hydrophila, Klebsiella pneumoniae, E. coli, Serratia marcescens, Enterobacter spp. and Shigella spp. Overall the prevalence of class 1 integrons, class 2 integrons, extended-spectrum betalactamases (ESBLs) blaCTX-M, blaSHV and aac(6')-Ib-cr gene was 38 percent, 24 percent, 38 percent, 31 percent and 31 percent respectively. Forty-two percent of the Enterobacteriaceae strains carried blaCTX-M gene, which is a common ESBL gene in clinics. The study demonstrates that tilapia found in the polluted waters can serve as reservoirs and an alternative route for human exposure to clinically important ARG-carrying bacteria. The consumption and handling of these fish may pose a potential health risk.201627581926
2944120.9931Antimicrobial Resistance in Wildlife: Implications for Public Health. The emergence and spread of antimicrobial-resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black-headed gulls (Larus ridibundus), lesser black-back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty-six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug-resistant phenotypes. The phylogenetic group and AMR-encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline-, ampicillin- and streptomycin-resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: bla(TEM), strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug-resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR.201525639901
2962130.9931Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species.201729254727
1654140.9931High frequency of B2 phylogroup among non-clonally related fecal Escherichia coli isolates from wild boars, including the lineage ST131. Wild boars are worldwide distributed mammals which population is increasing in many regions, like the Iberian Peninsula, leading to an increased exposition to humans. They are considered reservoirs of different zoonotic pathogens and have been postulated as potential vectors of antimicrobial-resistant (AMR) bacteria. This study aimed to determine the prevalence of antimicrobial resistance and phylogenetic distribution of Escherichia coli from wild boar feces. Antimicrobial resistance and integron content was genetically characterized and E. coli of B2 phylogroup was further analyzed by molecular typing and virulence genotyping. The prevalence of AMR E. coli was low, with only 7.5% of isolates being resistant against at least one antimicrobial, mainly ampicillin, tetracycline and/or sulfonamide. An unexpected elevated rate of B2 phylogroup (47.5%) was identified, most of them showing unrelated pulsed-field-gel-electrophoresis patterns. ST131/B2 (fimH 22 sublineage), ST28/B2, ST1170/B2, ST681/B2 and ST625/B2 clones, previously described in extraintestinal infections in humans, were detected in B2 isolates, and carried one or more genes associated with extraintestinal pathogenic E. coli (ExPEC). This study demonstrated a low prevalence of antimicrobial resistance in E. coli from wild boars, although they are not exempt of AMR bacteria, and a predominance of genetically diverse B2 phylogroup, including isolates carrying ExPEC which may contribute to the spread of virulence determinants among different ecosystems.201728365752
3639150.9930Assessing the Bacterial Community Composition of Bivalve Mollusks Collected in Aquaculture Farms and Respective Susceptibility to Antibiotics. Aquaculture is a growing sector, providing several products for human consumption, and it is therefore important to guarantee its quality and safety. This study aimed to contribute to the knowledge of bacterial composition of Crassostrea gigas, Mytilus spp. and Ruditapes decussatus, and the antibiotic resistances/resistance genes present in aquaculture environments. Two hundred and twenty-two bacterial strains were recovered from all bivalve mollusks samples belonging to the Aeromonadaceae, Bacillaceae, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Micrococcaceae, Moraxellaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Staphylococcaceae, Streptococcaceae, Vibrionaceae, and Yersiniaceae families. Decreased susceptibility to oxytetracycline prevails in all bivalve species, aquaculture farms and seasons. Decreased susceptibilities to amoxicillin, amoxicillin/clavulanic acid, cefotaxime, cefoxitin, ceftazidime, chloramphenicol, florfenicol, colistin, ciprofloxacin, flumequine, nalidixic acid and trimethoprim/sulfamethoxazole were also found. This study detected six qnrA genes among Shewanella algae, ten qnrB genes among Citrobacter spp. and Escherichia coli, three oqxAB genes from Raoultella ornithinolytica and bla(TEM-1) in eight E. coli strains harboring a qnrB19 gene. Our results suggest that the bacteria and antibiotic resistances/resistance genes present in bivalve mollusks depend on several factors, such as host species and respective life stage, bacterial family, farm's location and season, and that is important to study each aquaculture farm individually to implement the most suitable measures to prevent outbreaks.202134572717
5591160.9930Widespread dissemination of Salmonella, Escherichia coli and Campylobacter resistant to medically important antimicrobials in the poultry production continuum in Canada. The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) monitors Escherichia coli, Salmonella and Campylobacter and their resistance to antimicrobials in broiler chickens at the farm and slaughter plant levels. In response to many years of CIPARS' observations and farmers' data, the Chicken Farmers of Canada implemented a strategy to reduce antimicrobial use in 2014. As resistance genes can be transmitted vertically from parents to their offspring, a study was conducted in broiler breeder flocks to assess the frequency of target bacteria, their antimicrobial resistance (AMR) and to obtain a comprehensive picture of AMR in poultry production. Spent breeder flocks slaughtered between 2018 and 2021 were sampled and data from broiler flocks at the farm and slaughter plants were assessed. Salmonella was most frequently detected in farm broiler chickens (46%), while Campylobacter was most frequently detected in broiler breeders (73%). In Campylobacter, high levels (20-24%) of ciprofloxacin resistance were found across the three production stages, and was highest in farm broiler chickens (24%). In E. coli, an indicator organism, low-level ceftriaxone resistance and occasional isolates that were non-susceptible to ciprofloxacin were noted. Using the indicator, fully susceptible E. coli, broiler breeders had the highest frequency (54%) compared to farm (36%) and slaughtered (35%) broiler chickens. In Salmonella broiler breeders had the highest resistance to most antimicrobials tested.Fully susceptible Salmonella was lowest in broiler breeders (16%) compared to farm (42%) and slaughtered (42%) broiler chickens. Salmonella serovars differed between the production stages, but S. Kentucky was the most predominant. Resistance to critically important antimicrobials in human medicine and regional variations in resistance profiles were observed. This study suggests that broiler breeders carry foodborne bacteria resistant to antimicrobials used in human medicine, demonstrating their role in the maintenance of AMR in poultry and the need to adopt a harmonized sector-wide AMU strategy.202539999076
2881170.9930Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits.201526280543
2874180.9930Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI. Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (bla OXA, bla SHV, and bla PSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and bla OXA than isolates from urban waterway. These results indicate that Milwaukee's urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.201525972844
1798190.9930Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.202336988354