PLACEMENT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
53000.9744Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
842410.9738Postseptational chromosome partitioning in bacteria. Mutations in the spoIIIE gene prevent proper partitioning of one chromosome into the developing prespore during sporulation but have no overt effect on partitioning in vegetatively dividing cells. However, the expression of spoIIIE in vegetative cells and the occurrence of genes closely related to spoIIIE in a range of nonsporulating eubacteria suggested a more general function for the protein. Here we show that SpoIIIE protein is needed for optimal chromosome partitioning in vegetative cells of Bacillus subtilis when the normal tight coordination between septation and nucleoid partitioning is perturbed or when septum positioning is altered. A functional SpoIIIE protein allows cells to recover from a state in which their chromosome has been trapped by a closing septum. By analogy to its function during sporulation, we suggest that SpoIIIE facilitates partitioning by actively translocating the chromosome out of the septum. In addition to enhancing the fidelity of nucleoid partitioning, SpoIIIE also seems to be required for maximal resistance to antibiotics that interfere with DNA metabolism. The results have important implications for our understanding of the functions of genes involved in the primary partitioning machinery in bacteria and of how septum placement is controlled.19957567988
34420.9732Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins. The specific interaction between rhizobia and their hosts requires many genes that influence both early and late steps in symbiosis. Three new genes, designated prsD, prsE (protein secretion) and orf3, were identified adjacent to the exo133 mutation in a cosmid carrying the genomic DNA of Rhizobium leguminosarum bv. trifolii TA1. The prsDE genes share significant homology to the genes encoding ABC transporter proteins PrtDE from Erwinia chrysanthemi and AprDE from Pseudomonas aeruginosa which export the proteases in these bacteria. PrsD shows at least five potential transmembrane hydrophobic regions and a large hydrophilic domain containing an ATP/GTP binding cassette. PrsE has only one potential transmembrane hydrophobic domain in the N-terminal part and is proposed to function as an accessory factor in the transport system. ORF3, like PrtF and AprF, has a typical N-terminal signal sequence but has no homology to these proteins. The insertion of a kanamycin resistance cassette into the prsD gene of the R. leguminosarum bv. trifolii TA1 wild-type strain created a mutant which produced a normal amount of exopolysaccharide but was not effective in the nodulation of clover plants.19979141701
36930.9731A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096
82340.9729Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases.19938224883
53350.9728Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. Four new cloning vectors have been constructed from the broad-host-range cloning vector pRK290. These vectors, pLA2901, pLA2905, pLA2910, and pLA2917, confer resistance to kanamycin and tetracycline. The latter two are cosmid derivatives of pLA2901. The new vectors can be mobilized into, and are stably maintained in, a variety of gram-negative bacteria. A Sau3A genomic bank of Methylobacterium organophilum strain xx DNA has been constructed in pLA2917, and complementation analysis, with a variety of mutants unable to grow on methanol, revealed at least five separate regions necessary for growth on methanol. Complementation analysis and Tn5 mutagenesis data suggest that at least three genes are responsible for expression of active methanol dehydrogenase.19852982796
57560.9728Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
300770.9728Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae.200414711528
521280.9724Draft Genome Sequences of Pseudomonas MWU13-2625 and MWU12-2115, Isolated from a Wild Cranberry Bog at the Cape Cod National Seashore. Two highly similar Pseudomonas sp. genome sequences from wetland bog soil isolates with draft genomes of ~6.3 Mbp are reported. Although the exact taxonomic placement and environmental roles of these bacteria are unclear, predicted genes for stress tolerance, antibiotic resistance, and a type VI secretion system were detected.201830533670
302190.9722Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.201121115076
6135100.9722Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames.201626795356
535110.9721Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.19882853689
495120.9721Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Resistance to antiseptics and disinfectants in Staphylococcus aureus, encoded by the qacC/qacD gene family, is associated with genetically dissimilar small, nontransmissible (pSK89) and large conjugative (pSK41) plasmids. The qacC and qacD genes were analysed in detail through deletion mapping and nucleotide sequence analysis, and shown to encode the same polypeptide, predicted to be 107 aa in size. Direct repeat elements flank the qacD gene, elements which also flank the qacC gene in truncated forms. These elements contain palA sequences, regions of DNA required for replication of some plasmids in S. aureus. The qacC gene is predicted to have evolved from the qacD gene, and in the process to have become reliant on new promoter sequences for its expression. The entire sequence of the 2.4-kb plasmid pSK89 (which contains qacC) was determined, and is compared with other plasmids from Gram + bacteria.19911840534
2997130.9720Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.202033584554
9980140.9720A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate.19989776589
397150.9720PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate.200312563033
403160.9720Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons.19873037534
429170.9720An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria.19911657722
391180.9720New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli.19892551782
357190.9719New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. In this report we describe two distinct approaches to develop new antibiotic resistance cassettes that allow for efficient selection of Borrelia burgdorferi transformants. The first approach utilizes fusions of borrelial flagellar promoters to antibiotic resistance markers from other bacteria. The AACC1 gene, which encodes a gentamicin acetyltransferase, conferred a high level of gentamicin resistance in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred between this cassette and the kanamycin resistance cassette, which was previously developed in an analogous fashion. A second and different approach was taken to develop an efficient selectable marker that confers resistance to the antibiotic coumermycin A1. A synthetic gene was designed from the GYRB301 allele of the coumermycin-resistant B. Burgdorferi strain B31-NGR by altering the coding sequence at the wobble position. The resulting gene, GYRB(SYN), encodes a protein identical to the product of GYRB301, but the genes share only 66% nucleotide identity. The nucleotide sequence of GYRB(SYN)is sufficiently divergent from the endogenous B. Burgdorferi GYRB gene to prevent recombination between them. The cassettes described in this paper improve our repertoire of genetic tools in B. Burgdorferi. These studies also provide insight into parameters governing recombination and gene expression in B. Burgdorferi.200314593251